TALK=T;RUN( 1, 5) ** LOAD(859) from the PHOENICS Input Library Echo DISPLAY / USE settings DISPLAY The purpose of creation of this case is a demonstration of transfer objects feature. This example explores the unsteady distribution of pollution on a reasonably large region of ground. The pollution source is set in the west-low corner and acts only at the first time step. Further the pollution cloud will be distributed by wind. Use of transfer objects permits the calculation of unidirectional flow on small parts one after another. The solved area in this example is divided into four parts. The solution in each part is made in separate runs. --------------------- ! ! ! ! ! ! ! 3rd run ! 4th run ! ! ! ! W1 ! ! ! --> ----------+---------- ! ! ! ! ! ! ! 1st run ! 2nd run ! ! ! ! X ! ! ! ! ! --------------------- ! ^ !----- Z /!\ ! !U1 The HTR$ O1.. and ETRO1.. transfer objects on the high and east boundaries are formed at the end of each time step of the first run by means of two '(export' In-Form statements. They store the values of outlet mass flux and concentration on these boundaries in order to transfer them to the second and third runs. The second run reads the information at the low boundary from the HTRO1..$ objects at the start of each time step by means of '(import In-Form statements and at the end of each time step dumps it at the east boundary in the ETRO2 object. The third run reads from the ETRO1 object and writes from the HTRO3$ a> object. The fourth run reads the information from HTRO3 and ETRO2 import transfer objects at the low and west boundaries. The wind profile at the inlet boundaries is set by means of In-For$ m statements as a logarithmic velocity profile. The ground relief (HIG variable) is calculated by an I$ n-Form formula. The MARK variable defined by In-Form is used for the image of the ground relief in Photon. The ground roughness is simulated by a change in air density with height in an atmospheric layer. The density of the air is ca$ lculated from a b$ arometric formula by means of In-Form. The fifth and last run simulates the flow in the whole region without partitioning. It will be useful to compare with the previ$ ous runs. The Q1 contains PHOTON USE commands ENDDIS PHOTON USE p 110 1 5 1;; VI -1 1 1 gr ou y 1 SURF MARK Y .99 SURF MARK X .99 SURF MARK Z .99 msg First run: ground geometry pause p 110;;; vi y gr ou y 1 con rho1 y m fi;.001 msg density contours pause con cl;red ve y 1 sh msg velocity vectors pause con cl;red set con scale range on con conc y 1 fi;0 0.01;.001 set con scale range off msg concentration contours pause p 210 1 5 1;; VI -1 1 1 gr ou y 1 SURF MARK Y .99 SURF MARK X .99 SURF MARK Z .99 msg Second run: ground geometry pause p 210;;; vi y gr ou y 1 con rho1 y m fi;.001 msg density contours pause con cl;red ve y 1 sh msg velocity vectors pause con cl;red set con scale range on con conc y 1 fi;0 0.01;.001 set con scale range off msg concentration contours pause p 310 1 5 1;; VI -1 1 1 gr ou y 1 SURF MARK Y .99 SURF MARK X .99 SURF MARK Z .99 msg Third run: ground geometry pause p 310;;; vi y gr ou y 1 con rho1 y m fi;.001 msg density contours pause con cl;red ve y 1 sh msg velocity vectors pause con cl;red set con scale range on con conc y 1 fi;0 0.01;.001 set con scale range off msg concentration contours pause p 410 1 5 1;; VI -1 1 1 gr ou y 1 SURF MARK Y .99 SURF MARK X .99 SURF MARK Z .99 msg Fourth run: ground geometry pause p 410;;; vi y gr ou y 1 con rho1 y m fi;.001 msg density contours pause con cl;red ve y 1 sh msg velocity vectors pause con cl;red set con scale range on con conc y 1 fi;0 0.01;.001 set con scale range off msg concentration contours pause p 510 1 5 1;; VI -1 1 1 gr ou y 1 SURF MARK Y .99 SURF MARK X .99 SURF MARK Z .99 msg First run: ground geometry pause p 510;;; vi y gr ou y 1 con rho1 y m fi;.001 msg density contours pause con cl;red ve y 1 sh msg velocity vectors pause con cl;red set con scale range on con conc y 1 fi;0 0.01;.001 set con scale range off msg concentration contours ENDUSE First run --------- Group 1. Run Title and Number TEXT(ATMOSPHERIC B.L., first run ) Group 1. T-Direction Grid Spacing STEADY=F;GRDPWR(T,10,5.E3,1) Group 3. X-Direction Grid Spacing GRDPWR(X,20,5000,1) Group 4. Y-Direction Grid Spacing GRDPWR(Y,20,1000,2.0) Group 5. Z-Direction Grid Spacing GRDPWR(Z,20,5000,1) Group 7. Variables: STOREd,SOLVEd,NAMEd SOLVE(P1,U1,V1,W1,CONC) STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1) SOLUTN(P1,Y,Y,Y,N,N,Y) TURMOD(KEMODL) Group 9. Properties PRESS0= 1.000000E+05; TEMP0= 2.730000E+02 SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm DVO1DT= 3.410000E-03 PRT(EP)= 1.314000E+00 Group 11.Initialise Var/Porosity Fields FIINIT(CONC)=0.0 Group 13. Boundary & Special Sources ! outlets PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP) COVAL(HOUT,P1,1.,0.) PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(EOUT,P1,1.,0.) PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(NOUT,P1,1.,0.) ! pollution source PATCH(SOURCE,CELL,1,7,1,1,1,4,1,1) COVAL(SOURCE,CONC,FIXFLU,1.E5) ! ground bourndary PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP) COVAL(GROUND,U1,GRND5,0.) COVAL(GROUND,W1,GRND5,0.) COVAL(GROUND,KE,GRND5,GRND5) COVAL(GROUND,EP,GRND5,GRND5) WALLA = 2.000000E-02 ;WALLB = 0.000000E+00 EGWF = T WALLCO = GRND5 !inlets by power-law form:Uy=Uh*(y/h)**alfa REAL(VELX,VELZ,REFH,ALPHA,RHOIN) REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH) VELX=1.0 ! x component of inlet velocity VELZ=1.0 ! z component of inlet velocity REFH=10. ! reference height for wind reference velocity ALPHA=0.21 ! RHOIN=RHO1 ! inlet density AK=0.41 ! constant ZO=0.022 ! effective roughness length HO=0.0 ! height of boundary-layer origin above domain origin VEL2=VELX*VELX+VELZ*VELZ QREF=SQRT(VEL2) ! inlet velocity RH=REFH/ZO QTAU=AK*QREF/(LOG(RH)) QTAU2=QTAU*QTAU GKEIN=QTAU2/0.3 ! inlet k GEPCON=QTAU2*QTAU/AK PATCH(LINLET,LOW,1,NX,1,NY,1,1,1,LSTEP) CONST=RHOIN*ABS(VELZ)/REFH**ALPHA (SOURCE of P1 at LINLET is CONST*YG^ALPHA) CONST=VELX/REFH**ALPHA (SOURCE of U1 at LINLET is CONST*YG^ALPHA with ONLYMS) CONST=VELZ/REFH**ALPHA (SOURCE of W1 at LINLET is CONST*YG^ALPHA with ONLYMS) (SOURCE of KE at LINLET is GKEIN with ONLYMS) (SOURCE of EP at LINLET is GEPCON/(YG-HO) with ONLYMS) PATCH(WINLET,WEST,1,1,1,NY,1,NZ,1,LSTEP) CONST=RHOIN*ABS(VELX)/REFH**ALPHA (SOURCE of P1 at WINLET is CONST*YG^ALPHA) CONST=VELX/REFH**ALPHA (SOURCE of U1 at WINLET is CONST*YG^ALPHA with ONLYMS) CONST=VELZ/REFH**ALPHA (SOURCE of W1 at WINLET is CONST*YG^ALPHA with ONLYMS) (SOURCE of KE at WINLET is GKEIN with ONLYMS) (SOURCE of EP at WINLET is GEPCON/(YG-HO) with ONLYMS) ! initial by power-law form: Uy=Uh*(y/h)**alfa PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1) CONST=VELX/REFH**ALPHA (INITIAL of U1 at INIT is CONST*YG^ALPHA) CONST=VELZ/REFH**ALPHA (INITIAL of W1 at INIT is CONST*YG^ALPHA) (INITIAL of KE at INIT is GKEIN) (INITIAL of EP at INIT is GEPCON/(YG-HO)) REAL(XSIZE,ZSIZE,X0,Z0) XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area X0=0; Z0=0 ! coordinates of origin on explored area ! ground relief (STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($ 2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR) ! geometry marker (STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR) ! air density (PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000))) ! create export transfer objects DO II=1,LSTEP PATCH(HPAT:II:,HIGH,1,NX,1,NY,NZ,NZ,:II:,:II:) (EXPORT in HTRO1:II: at HPAT:II:) PATCH(EPAT:II:,EAST,NX,NX,1,NY,1,NZ,:II:,:II:) (EXPORT in ETRO1:II: at EPAT:II:) ENDDO Group 15. Terminate Sweeps LSWEEP=50 Group 18. Limits VARMIN(CONC)=0. Group 22. Monitor Print-Out IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2 Group 24. Dumps For Restarts IDISPA=1; IDISPB=1; IDISPC=10; CSG1='1' TSTSWP=-1 DISTIL=T EX(P1 )=6.653E-01 EX(U1 )=1.872E+00 EX(V1 )=2.486E-02 EX(W1 )=1.874E+00 EX(KE )=6.406E-02 EX(EP )=2.039E-04 EX(RHO1)=1.120E+00 EX(MARK)=6.183E-01 EX(HIG )=7.655E+00 EX(EL1 )=1.250E+02 EX(ENUT)=1.614E+01 EX(EPKE)=1.000E-10 EX(CONC)=1.080E-02 LSG57=T;ISG52=2 PARSOL=F;ntprin=1 LIBREF = 859 STOP Second run ---------- Group 1. Run Title and Number TEXT(ATMOSPHERIC B.L., second run ) Group 1. T-Direction Grid Spacing STEADY=F;GRDPWR(T,10,5.E3,1) Group 3. X-Direction Grid Spacing GRDPWR(X,20,5000,1) Group 4. Y-Direction Grid Spacing GRDPWR(Y,20,1000,2.0) Group 5. Z-Direction Grid Spacing GRDPWR(Z,20,5000,1) Group 7. Variables: STOREd,SOLVEd,NAMEd SOLVE(P1,U1,V1,W1,CONC) STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1) SOLUTN(P1,Y,Y,Y,N,N,Y) TURMOD(KEMODL) Group 9. Properties PRESS0= 1.000000E+05; TEMP0= 2.730000E+02 SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm DVO1DT= 3.410000E-03 PRT(EP)= 1.314000E+00 Group 11.Initialise Var/Porosity Fields FIINIT(CONC)=0.0 Group 13. Boundary & Special Sources ! outlets PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP) COVAL(HOUT,P1,1.,0.) PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(EOUT,P1,1.,0.) PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(NOUT,P1,1.,0.) ! ground bourndary PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP) COVAL(GROUND,U1,GRND5,0.) COVAL(GROUND,W1,GRND5,0.) COVAL(GROUND,KE,GRND5,GRND5) COVAL(GROUND,EP,GRND5,GRND5) WALLA = 2.000000E-02 ;WALLB = 0.000000E+00 EGWF = T WALLCO = GRND5 ! inlets by power-law form: Uy=Uh*(y/h)**alfa REAL(VELX,VELZ,REFH,ALPHA,RHOIN) REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH) VELX=1.0 ! x component of inlet velocity VELZ=1.0 ! z component of inlet velocity REFH=10. ! reference height for wind reference velocity ALPHA=0.21 ! RHOIN=RHO1 ! inlet density AK=0.41 ! constant ZO=0.022 ! effective roughness length HO=0.0 ! height of boundary-layer origin above domain origin VEL2=VELX*VELX+VELZ*VELZ QREF=SQRT(VEL2) ! inlet velocity RH=REFH/ZO QTAU=AK*QREF/(LOG(RH)) QTAU2=QTAU*QTAU GKEIN=QTAU2/0.3 ! inlet k GEPCON=QTAU2*QTAU/AK PATCH(WINLET,WEST,1,1,1,NY,1,NZ,1,LSTEP) CONST=RHOIN*ABS(VELX)/REFH**ALPHA (SOURCE of P1 at WINLET is CONST*YG^ALPHA) CONST=VELX/REFH**ALPHA (SOURCE of U1 at WINLET is CONST*YG^ALPHA with ONLYMS) CONST=VELZ/REFH**ALPHA (SOURCE of W1 at WINLET is CONST*YG^ALPHA with ONLYMS) (SOURCE of KE at WINLET is GKEIN with ONLYMS) (SOURCE of EP at WINLET is GEPCON/(YG-HO) with ONLYMS) ! initial by power-law form: Uy=Uh*(y/h)**alfa PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1) CONST=VELX/REFH**ALPHA (INITIAL of U1 at INIT is CONST*YG^ALPHA) CONST=VELZ/REFH**ALPHA (INITIAL of W1 at INIT is CONST*YG^ALPHA) (INITIAL of KE at INIT is GKEIN) (INITIAL of EP at INIT is GEPCON/(YG-HO)) REAL(XSIZE,ZSIZE,X0,Z0) XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area X0=0; Z0=ZWLAST ! coordinates of origin on explored area ! ground relief (STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($ 2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR) ! geometry marker (STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR) ! air density (PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000))) DO II=1,LSTEP ! read exist transfer objects PATCH(LPAT:II:,LOW,1,NX,1,NY,1,1,:II:,:II:) (IMPORT from HTRO1:II: at LPAT:II:) ! create transfer objects PATCH(EPAT:II:,EAST,NX,NX,1,NY,1,NZ,:II:,:II:) (EXPORT in ETRO2:II: at EPAT:II:) ENDDO Group 15. Terminate Sweeps LSWEEP=50 Group 18. Limits VARMIN(CONC)=0. Group 22. Monitor Print-Out IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2 Group 24. Dumps For Restarts IDISPA=1; IDISPB=1; IDISPC=10; CSG1='2' TSTSWP=-1 DISTIL=T EX(P1 )=6.024E-01 EX(U1 )=1.866E+00 EX(V1 )=1.863E-02 EX(W1 )=1.850E+00 EX(KE )=7.773E-02 EX(EP )=2.190E-04 EX(RHO1)=1.134E+00 EX(MARK)=7.909E-01 EX(HIG )=2.626E+00 EX(EL1 )=1.151E+02 EX(ENUT)=1.671E+01 EX(EPKE)=1.000E-10 EX(CONC)=4.890E-03 LSG57=T;ISG52=2 PARSOL=F;ntprin=1 STOP Third run --------- Group 1. Run Title and Number TEXT(ATMOSPHERIC B.L., Third run ) Group 2. T-Direction Grid Spacing STEADY=F;GRDPWR(T,10,5.E3,1) Group 3. X-Direction Grid Spacing GRDPWR(X,20,5000,1) Group 4. Y-Direction Grid Spacing GRDPWR(Y,20,1000,2.0) Group 5. Z-Direction Grid Spacing GRDPWR(Z,20,5000,1) Group 7. Variables: STOREd,SOLVEd,NAMEd SOLVE(P1,U1,V1,W1,CONC) STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1) SOLUTN(P1,Y,Y,Y,N,N,Y) TURMOD(KEMODL) Group 9. Properties PRESS0= 1.000000E+05; TEMP0= 2.730000E+02 SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm DVO1DT= 3.410000E-03 PRT(EP)= 1.314000E+00 Group 11.Initialise Var/Porosity Fields FIINIT(CONC)=0.0 Group 13. Boundary & Special Sources ! outlets PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP) COVAL(HOUT,P1,1.,0.) PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(EOUT,P1,1.,0.) PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(NOUT,P1,1.,0.) ! ground bourndary PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP) COVAL(GROUND,U1,GRND5,0.) COVAL(GROUND,W1,GRND5,0.) COVAL(GROUND,KE,GRND5,GRND5) COVAL(GROUND,EP,GRND5,GRND5) WALLA = 2.000000E-02 ;WALLB = 0.000000E+00 EGWF = T WALLCO = GRND5 ! inlets by power-law form: Uy=Uh*(y/h)**alfa REAL(VELX,VELZ,REFH,ALPHA,RHOIN) REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH) VELX=1.0 ! x component of inlet velocity VELZ=1.0 ! z component of inlet velocity REFH=10. ! reference height for wind reference velocity ALPHA=0.21 ! RHOIN=RHO1 ! inlet density AK=0.41 ! constant ZO=0.022 ! effective roughness length HO=0.0 ! height of boundary-layer origin above domain origin VEL2=VELX*VELX+VELZ*VELZ QREF=SQRT(VEL2) ! inlet velocity RH=REFH/ZO QTAU=AK*QREF/(LOG(RH)) QTAU2=QTAU*QTAU GKEIN=QTAU2/0.3 ! inlet k GEPCON=QTAU2*QTAU/AK PATCH(LINLET,LOW,1,NX,1,NY,1,1,1,LSTEP) CONST=RHOIN*ABS(VELZ)/REFH**ALPHA (SOURCE of P1 at LINLET is CONST*YG^ALPHA) CONST=VELX/REFH**ALPHA (SOURCE of U1 at LINLET is CONST*YG^ALPHA with ONLYMS) CONST=VELZ/REFH**ALPHA (SOURCE of W1 at LINLET is CONST*YG^ALPHA with ONLYMS) (SOURCE of KE at LINLET is GKEIN with ONLYMS) (SOURCE of EP at LINLET is GEPCON/(YG-HO) with ONLYMS) ! initial by power-law form: Uy=Uh*(y/h)**alfa PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1) CONST=VELX/REFH**ALPHA (INITIAL of U1 at INIT is CONST*YG^ALPHA) CONST=VELZ/REFH**ALPHA (INITIAL of W1 at INIT is CONST*YG^ALPHA) (INITIAL of KE at INIT is GKEIN) (INITIAL of EP at INIT is GEPCON/(YG-HO)) REAL(XSIZE,ZSIZE,X0,Z0) XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area X0=XULAST; Z0=0 ! coordinates of origin on explored area ! ground relief (STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($ 2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR) ! geometry marker (STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR) ! air density (PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000))) DO II=1,LSTEP ! read transfer object PATCH(WPAT:II:,WEST,1,1,1,NY,1,NZ,:II:,:II:) (IMPORT from ETRO1:II: at WPAT:II:) ! create transfer object PATCH(HPAT:II:,HIGH,1,NX,1,NY,NZ,NZ,:II:,:II:) (EXPORT in HTRO3:II: at HPAT:II:) ENDDO Group 15. Terminate Sweeps LSWEEP=50 Group 18. Limits VARMIN(CONC)=0. Group 22. Monitor Print-Out IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2 Group 24. Dumps For Restarts IDISPA=1; IDISPB=1; IDISPC=10; CSG1='3' TSTSWP=-1 DISTIL=T EX(P1 )=6.093E-01 EX(U1 )=1.849E+00 EX(V1 )=1.861E-02 EX(W1 )=1.866E+00 EX(KE )=7.800E-02 EX(EP )=2.191E-04 EX(RHO1)=1.137E+00 EX(MARK)=8.582E-01 EX(HIG )=1.407E+00 EX(EL1 )=1.149E+02 EX(ENUT)=1.671E+01 EX(EPKE)=1.000E-10 EX(CONC)=8.269E-03 LSG57=T;ISG52=2 PARSOL=F;ntprin=1 STOP fourth run ---------- Group 1. Run Title and Number TEXT(ATMOSPHERIC B.L., fourth run ) Group 2. T-Direction Grid Spacing STEADY=F;GRDPWR(T,10,5.E3,1) Group 3. X-Direction Grid Spacing GRDPWR(X,20,5000,1) Group 4. Y-Direction Grid Spacing GRDPWR(Y,20,1000,2.0) Group 5. Z-Direction Grid Spacing GRDPWR(Z,20,5000,1) Group 7. Variables: STOREd,SOLVEd,NAMEd SOLVE(P1,U1,V1,W1,CONC) STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1) SOLUTN(P1,Y,Y,Y,N,N,Y) TURMOD(KEMODL) Group 9. Properties PRESS0= 1.000000E+05; TEMP0= 2.730000E+02 SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm DVO1DT= 3.410000E-03 PRT(EP)= 1.314000E+00 Group 11.Initialise Var/Porosity Fields FIINIT(CONC)=0.0 Group 13. Boundary & Special Sources ! outlets PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP) COVAL(HOUT,P1,1.,0.) PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(EOUT,P1,1.,0.) PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(NOUT,P1,1.,0.) ! ground bourndary PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP) COVAL(GROUND,U1,GRND5,0.) COVAL(GROUND,W1,GRND5,0.) COVAL(GROUND,KE,GRND5,GRND5) COVAL(GROUND,EP,GRND5,GRND5) WALLA = 2.000000E-02 ;WALLB = 0.000000E+00 EGWF = T WALLCO = GRND5 ! initial by power-law form: Uy=Uh*(y/h)**alfa REAL(VELX,VELZ,REFH,ALPHA,RHOIN) REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH) VELX=1.0 ! x component of inlet velocity VELZ=1.0 ! z component of inlet velocity REFH=10. ! reference height for wind reference velocity ALPHA=0.21 ! RHOIN=RHO1 ! inlet density AK=0.41 ! constant ZO=0.022 ! effective roughness length HO=0.0 ! height of boundary-layer origin above domain origin VEL2=VELX*VELX+VELZ*VELZ QREF=SQRT(VEL2) ! inlet velocity RH=REFH/ZO QTAU=AK*QREF/(LOG(RH)) QTAU2=QTAU*QTAU GKEIN=QTAU2/0.3 ! inlet k GEPCON=QTAU2*QTAU/AK PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1) CONST=VELX/REFH**ALPHA (INITIAL of U1 at INIT is CONST*YG^ALPHA) CONST=VELZ/REFH**ALPHA (INITIAL of W1 at INIT is CONST*YG^ALPHA) (INITIAL of KE at INIT is GKEIN) (INITIAL of EP at INIT is GEPCON/(YG-HO)) REAL(XSIZE,ZSIZE,X0,Z0) XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area X0=XULAST; Z0=ZWLAST ! coordinates of origin on explored area ! ground relief (STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($ 2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR) ! geometry marker (STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR) ! air density (PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000))) ! read transfer objects DO II=1,LSTEP PATCH(LPAT:II:,LOW,1,NX,1,NY,1,1,:II:,:II:) (IMPORT from HTRO3:II: at LPAT:II:) PATCH(WPAT:II:,WEST,1,1,1,NY,1,NZ,:II:,:II:) (IMPORT from ETRO2:II: at WPAT:II:) ENDDO Group 15. Terminate Sweeps LSWEEP=50 Group 18. Limits VARMIN(CONC)=0. Group 22. Monitor Print-Out IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2 Group 24. Dumps For Restarts IDISPA=1; IDISPB=1; IDISPC=10; CSG1='4' TSTSWP=-1 DISTIL=T EX(P1 )=6.545E-01 EX(U1 )=1.841E+00 EX(V1 )=2.060E-02 EX(W1 )=1.842E+00 EX(KE )=1.175E-01 EX(EP )=2.695E-04 EX(RHO1)=1.137E+00 EX(MARK)=9.249E-01 EX(HIG )=4.938E-01 EX(EL1 )=1.004E+02 EX(ENUT)=1.909E+01 EX(EPKE)=1.000E-10 EX(CONC)=3.404E-02 LSG57=T;ISG52=2 PARSOL=F;ntprin=1 STOP fifth run ---------- Group 1. Run Title and Number TEXT(ATMOSPHERIC B.L., fifth run ) Group 2. T-Direction Grid Spacing STEADY=F;GRDPWR(T,10,5.E3,1) Group 3. X-Direction Grid Spacing GRDPWR(X,40,10000,1) Group 4. Y-Direction Grid Spacing GRDPWR(Y,20,1000,2.0) Group 5. Z-Direction Grid Spacing GRDPWR(Z,40,10000,1) Group 7. Variables: STOREd,SOLVEd,NAMEd SOLVE(P1,U1,V1,W1,CONC) STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1) SOLUTN(P1,Y,Y,Y,N,N,Y) TURMOD(KEMODL) Group 9. Properties PRESS0= 1.000000E+05; TEMP0= 2.730000E+02 SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm DVO1DT= 3.410000E-03 PRT(EP)= 1.314000E+00 Group 11.Initialise Var/Porosity Fields FIINIT(CONC) = 0.000000E+00 Group 13. Boundary & Special Sources ! outlets PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP) COVAL(HOUT,P1,1.,0.) PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(EOUT,P1,1.,0.) PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(NOUT,P1,1.,0.) ! pollution source PATCH(SOURCE,CELL,1,7,1,1,1,4,1,1) COVAL(SOURCE,CONC,FIXFLU,1.E5) PATCH(SOURCE,CELL,1,7,1,1,1,4,1,LSTEP) (SOURCE of CONC at SOURCE is COVAL(FIXFLU,10.*TIM)) ! ground bourndary PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP) COVAL(GROUND,U1,GRND5,0.) COVAL(GROUND,W1,GRND5,0.) COVAL(GROUND,KE,GRND5,GRND5) COVAL(GROUND,EP,GRND5,GRND5) WALLA = 2.000000E-02 ;WALLB = 0.000000E+00 EGWF = T WALLCO = GRND5 ! inlets by power-law form: Uy=Uh*(y/h)**alfa REAL(VELX,VELZ,REFH,ALPHA,RHOIN) REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH) VELX=1.0 ! x component of inlet velocity VELZ=1.0 ! z component of inlet velocity REFH=10. ! reference height for wind reference velocity ALPHA=0.21 ! RHOIN=RHO1 ! inlet density AK=0.41 ! constant ZO=0.022 ! effective roughness length HO=0.0 ! height of boundary-layer origin above domain origin VEL2=VELX*VELX+VELZ*VELZ QREF=SQRT(VEL2) ! inlet velocity RH=REFH/ZO QTAU=AK*QREF/(LOG(RH)) QTAU2=QTAU*QTAU GKEIN=QTAU2/0.3 ! inlet k GEPCON=QTAU2*QTAU/AK PATCH(LINLET,LOW,1,NX,1,NY,1,1,1,LSTEP) CONST=RHOIN*ABS(VELZ)/REFH**ALPHA CONST=ABS(VELZ)/REFH**ALPHA (SOURCE of P1 at LINLET is CONST*YG^ALPHA) (SOURCE of P1 at LINLET is RHO1*CONST*YG^ALPHA) CONST=VELX/REFH**ALPHA (SOURCE of U1 at LINLET is CONST*YG^ALPHA with ONLYMS) CONST=VELZ/REFH**ALPHA (SOURCE of W1 at LINLET is CONST*YG^ALPHA with ONLYMS) (SOURCE of KE at LINLET is GKEIN with ONLYMS) (SOURCE of EP at LINLET is GEPCON/(YG-HO) with ONLYMS) PATCH(WINLET,WEST,1,1,1,NY,1,NZ,1,LSTEP) CONST=RHOIN*ABS(VELX)/REFH**ALPHA (SOURCE of P1 at WINLET is CONST*YG^ALPHA) CONST=VELX/REFH**ALPHA (SOURCE of U1 at WINLET is CONST*YG^ALPHA with ONLYMS) CONST=VELZ/REFH**ALPHA (SOURCE of W1 at WINLET is CONST*YG^ALPHA with ONLYMS) (SOURCE of KE at WINLET is GKEIN with ONLYMS) (SOURCE of EP at WINLET is GEPCON/(YG-HO) with ONLYMS) ! initial by power-law form: Uy=Uh*(y/h)**alfa PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1) CONST=VELX/REFH**ALPHA (INITIAL of U1 at INIT is CONST*YG^ALPHA) CONST=VELZ/REFH**ALPHA (INITIAL of W1 at INIT is CONST*YG^ALPHA) (INITIAL of KE at INIT is GKEIN) (INITIAL of EP at INIT is GEPCON/(YG-HO)) REAL(XSIZE,ZSIZE,X0,Z0) XSIZE=XULAST; ZSIZE=ZWLAST ! size of explored area X0=0; Z0=0 ! coordinates of origin on explored area ! ground relief (STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($ 2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR) ! geometry marker (STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR) ! air density (PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000))) Group 15. Terminate Sweeps LSWEEP=50 Group 18. Limits VARMIN(CONC)=0. Group 22. Monitor Print-Out IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2 Group 24. Dumps For Restarts IDISPA=1; IDISPB=1; IDISPC=LSTEP; CSG1='5' TSTSWP=-1 DISTIL=T EX(P1 )=4.700E+02 EX(U1 )=7.229E-01 EX(V1 )=1.281E-01 EX(W1 )=7.226E-01 EX(KE )=2.945E-02 EX(EP )=2.456E-04 EX(RHO1)=1.120E+00 EX(MARK)=7.981E-01 EX(HIG )=3.045E+00 EX(EL1 )=1.002E+02 EX(ENUT)=1.056E+01 EX(EPKE)=1.000E-10 EX(CONC)=1.338E-05 LSG57=T;ISG52=2 PARSOL=F;ntprin=1 STOP STOP