

AM

Т

Geometry Creation

Geometry creation

- Geometry can be created either:
 - from 'primitives' supplied with PHOENICS,
 - by import from CAD (in a variety of formats).

Object Shape

- Within the "bounding box" of an object, the shape is determined by the geometry file (".dat") associated with that object.
- The shape is defined by a set of quadrilateral facets.
- A large selection of basic geometry files are available (e.g. cylinder, wedge, etc).
- The default object shape is a rectangular block, which completely fills the object bounding box.
- Other shapes can be imported from the Geometry dialog box, or from CAD.

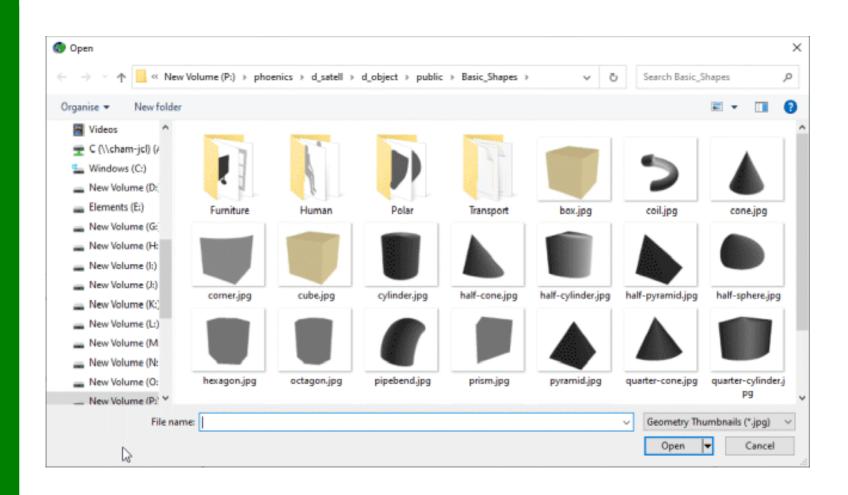
Object Shape

Lecture

• All this is controlled from the 'Shape' page of the Object Specification dialog.

Object Specification		?	\times	
General Options Size Place Shape				
Geometry	box			
Import geometry from	Shapemaker			
	CAD File			
Import by group				
Add texture to object	None set			
OK Cancel Reset Apply				

1


Supplied Geometries

- All the standard geometry files are kept in the directory \phoenics\d_satell\d_object, and its subdirectories.
- Geometry files can also be stored in the current working directory and its subdirectories.
- These will be searched before
 \phoenics\d_satell\d_object, allowing local usercreated geometries to replace the standard ones.
- The supplied geometries are divided into a number of categories, with fairly self-explanatory names.
- The folder public\basic_shapes contains a number of geometry primitives, including box, cylinder, cone and wedge.

Supplied Geometries

Lecture

 \geq

L

Т

Import from CAD

- CAD generated geometries may be imported in a number of common formats.
- Clicking on the CAD button on the Shape dialog will bring up a file browser, which can be used to locate the required CAD file.
- The interface will translate the CAD file to a ".dat" file in local Phoenics format. This will be stored in the local working directory, or alternatively in the fromCAD folder. A JPEG thumbnail of the imported geometry is also created.
- Once translated, the geometries is attached to the current object, and is also available for use with other objects of the same shape.

Import from CAD

- When a CAD file is imported, the full name of the CAD file is retained and is written to Q1.
- When the Q1 is next read, a check is made to see if the equivalent DAT file already exists.
- If it does and it is newer than the CAD file, the existing DAT file is used.
- If the CAD file is newer, or the DAT does not exist, the import process is invoked silently to create the DAT file.

Import from CAD

- The formats supported directly by VR are:
 - STL available in many popular CAD programs as an export format.
 - DXF (AutoCAD)
 - 3DS (Autodesk)
 - WRL
 - DW DesignWorkshop from Artifice
 - AC AC3D from Invis
 - IV Open Inventor

Import from CAD

- <u>Many further formats</u> are supported indirectly by translation to .3ds using SimLab Composer from *SimLab*Soft.
- This software is shipped with PHOENICS and runs silently whenever required.
- A licence key can be obtained directly from CHAM.
- The actual import and translation process is handled by the DatMaker module of PHOENICS.

T

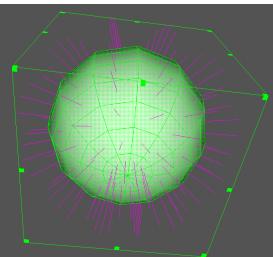
Import from CAD

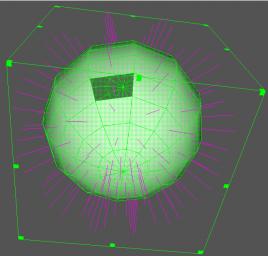
•The formats handled by Simlab Composer are:

*.dxf	AutoCAD	
*.dwg	AutoCAD	
*.dwf	AutoCAD	
*.skp	SketchUp	
*.3dm	Rhino	
*.sldasm, *.sldprt	SolidWorks	
*.asm, *.par, *.psm SolidEdge		
*.stp	STEP	
*.igs, *.iges	IGES	

*.iam, *.ipt	Auto
*.sat	3D A
*.obj	Wave
*.xaml	XAM
*.3dxml 3DXML	Dass
*.u3d	Unive
*.dae	COL
*.fbx	Auto

Autodesk Inventor 3D ACIS Wavefront Technologies XAML file Dassault 3DVIA Universal 3D COLLADA Autodesk FBX


The CAD Import process

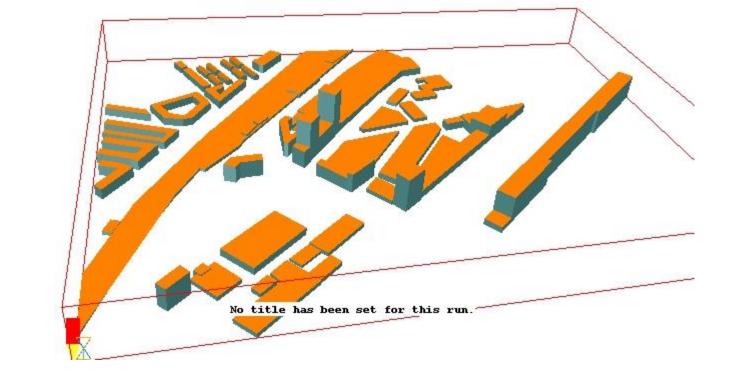

- During the import process the control dialog allows you to:
 - Change the scaling. Often a CAD file will be in millimetres not metres.
 - Align the CAD and CFD axes.
 - Change the size of the object to match the size from the CAD file (usually required).
 - Change the position of the object to match that determined from the CAD file (with an offset if required).
 - Perform geometry repair operations as mentioned later.
- CAD files can be imported singly, or as a group with each file generating a new object.

Geometry creation

- A few points must be observed prior to generating files which are to be imported into PHOENICS, regardless of what CAD program is used:
 - The geometry must be a 3D closed volume. Holes in the surface may lead to detection errors.
 - It must be defined by single-sided facets with normals all pointing outwards. Inward-facing facets will lead to detection errors.

Geometry creation

- More points which must be observed prior to generating files to be imported into PHOENICS:
 - Wireframe geometries cannot be used as they do not define closed volumes.
 - Too many inter-penetrating items within a single file can lead to detection errors. It is best to keep items which penetrate each other as separate objects, or to perform a Boolean join on them (in the CAD program) to create a single item with no internal structures.

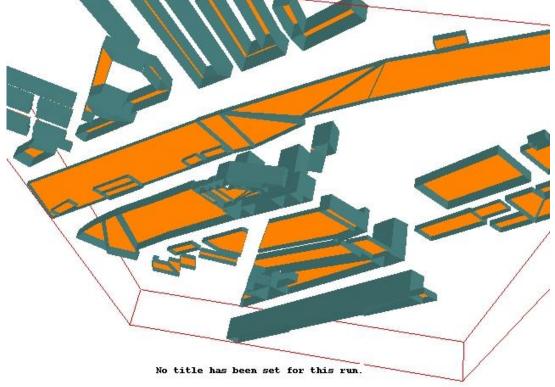

1

 \mathbf{T}

Geometry problems

Lecture

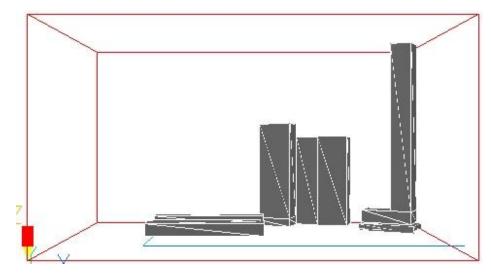
 At first sight, viewed from above, this geometry looks acceptable:



Geometry problems

Lecture

 But - this will not work because none of the buildings have bottoms, so they are not closed volumes. This can be seen when viewed from below.

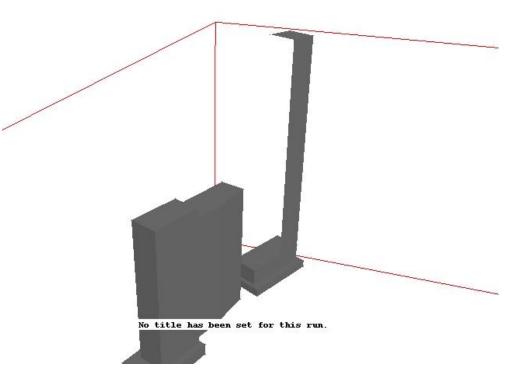

1

Т

Geometry problems

Lecture

• Here is a geometry imported from a 3DS file

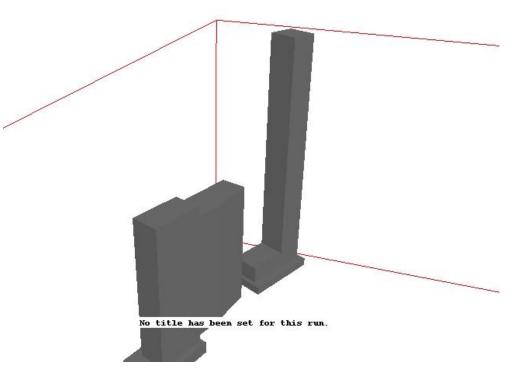

- It looks OK at first sight...
- But...

Geometry problems

Lecture

• If the view is changed, we see that

part of the building appears missing however we look at it



 \geq

Geometry problems

Lecture

• If we draw the facets double-sided

the missing part comes back – this part is inside out!

Geometry Repair

- CHAM
- Some defects in the CAD file can be corrected by DatMaker during the import process or for existing objects.
- DatMaker can
 - Fill in holes
 - Reverse inside-out geometries
 - Repair folded surfaces
 - Optionally split CAD entities into separate objects
 - Optionally split closed volumes into separate objects
- For existing objects it can also perform Boolean joins between several objects to eliminate internal facets which may be causing detection problems.

Geometry Repair

- To repair an existing object, such as the inside-out tower, either:
 - Select the object in the Object Management dialog, then select 'Datmaker operations' from the right-click context menu; or
 - Click 'Settings', 'Datmaker operations'; or
 - Select the object on the screen, then select 'Datmaker operations' from the right-click context menu.

Geometry Repair

 Ensure the required object is selected as the 'first object', then choose the repair operation and click OK.

Datmaker Object Operations	×			
Select first object BLOC1	•			
Other object(s) for operation:	🗖 🗖 Object changes —————			
	C Union			
	C Merge			
	C Difference			
	C Split (into closed volumes)			
	C Split (into CAD entities)			
Repair operations				
	☑ Do Hole Mend			
	☐ Folds			
	Consistent			
Name for output object	mygeom.dat			
Preserve existing Q1 as:	saved.q1			
	Save current settings to Q1			
	Post operation graphics display			
	OK Cancel			