Encyclopaedia Index
TITLE : Hydraulic jump in a supercritical flow
BY : CHAM User Support Team - Dr S V Zhubrin
FOR : Demonstration case
DATE : November, 2000
PHOENICS Version : 3.3.1
PHYSICAL SITUATION :
- The physical situation simulates the impingement of uniform
supercritical (Froude number is 2.8) water flow on a solid block.
- One symmetric half of the flow is considered due to symmetric
flow pattern.
- In adjusting to the stagnation conditions on the block face the
supercritical stream is expected to undergo an oblique hydrailic
jump.
- A subcritical region is then created between the jump and the body.
- The subcritical flow is deflected round the body and accelerates to
supercritical flow again.
- The task is to compute the distributions of velocities and depths.
ASSUMPTIONS :
- Hydrostatic pressure
- Incompressible, homogeneous fluid
- Viscous, bed friction and turbulence effects are neglected
- Non-varying bed topography
- Shallow flow: small vertical scale relative to horizontal
- Well-mixed-in-depth flow: uniform vertical distributions
SHALLOW-WATER MODELLING:
- Two-dimensional treatment of three-dimensional flows with
the local depth calculated as part of solution.
- Depth-averaged version of Navier-Stokes equations;
- Equations solved by analogy to isentropic, compressible gas flow:
- Density, RHO1= Depth, h
- Pressure, P1= g*h**2/2, i.e.
- RHO1=sqrt(2*P1/g)
- U1, V1 = depth-averaged velocity components
NUMERICAL DETAILS :
- Cartesian computational grid.
- Boundary conditions:
- Fixed fluxes for inlet mass/momentum and
- Fixed-pressure outlet (equivalent to fixed depth).
RESULTS :
The plots show the distribution of velocity and water depth (free
surface elevation) within the flow domain.
Pictures are as follows :
THE IMPLEMENTATION
All model settings have been made in VR-Editor of PHOENICS 3.3.1.
The relevant Q1 file can be inspectedby clicking
here.
svz