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Abstract

Turbulence is a phenomenon that occurs frequently in nature and that is also a situation present
in almost all industrial applications. In this work, the simulation of turbulent vortex shedding from
a bluff-body square cylinder has been undertaken using Large Eddy Simulation technique (LES).
The objective of this work was to implement this type of simulations in parallel PHOENICS and
validate the results in order to apply them to practical cases like bluff-body jet burners. The LES
Smagorinsky model and auxiliary calculations like Adam-Moulton high order time scheme have been
implemented as FORTRAN subroutines into the code. The turbulent flow has a Reynolds number of
21400 and it corresponds to a flow of water over a square cylinder. This has been previously used by
several authors to validate turbulence CFD models. The influences of the LES model and numerical
schemes are analyzed and the most important flow parameters are calculated. The results agree with
experimental and numerical available data. Also, a comparison between using LES and Reynolds
Averaged Navier-Stokes Equations with the k − ε model have been made and some differences are
pointed out. The results allow to conclude that the LES model improves the accuracy of the the
k−ε model and reproduces adequately the flow motion and the vortex shedding. The simulation has
been performed in parallel mode on a varying number of nodes of a 66-processor cluster. The parallel
calculation results in significant time savings compared with the sequential (single-processor) run.
The next step will be to apply this model to a bluff-body flame in order to study the interaction
between turbulence and chemistry in industrial burners.
Keywords: Turbulence, Large Eddy Simulation, LES, vortex shedding, square cylinder

Nomenclature

k turbulent kinetic energy [m2

s2 ]

ε dissipation rate of k [m2

s3 ]
H length of the side of the square cylinder [m]
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Nomenclature cont.

U reference velocity [m
s
]

f shedding frequency [Hz]
St Strouhal number
Re Reynolds number

ν kinematic viscosity [m2

s2 ]
Cw channel width [m]
Ch channel height [m]

ρ density [ kg
m3 ]

t time [s]
~u velocity [m

s
]

p pressure [ N
m2 ]

~~τ ′ viscous stresses [ N
m2 ]

fm body forces [ N
m3 ]

g(x) (any) filtered function
∆ filter’s length scale [m]

µ dynamic viscosity [ kg
ms

]
τ s
ij subgrid scale (SGS) Reynolds stress [ N

m2 ]

νT eddy viscosity [m2

s2 ]
Sij filtered strain rate [s−1]
|S| turbulence-energy-generation rate [s−2]
Cs Smagorinsky constant
φ a generic transported variable [φ’s units]

f(φ, t) all the terms of a transported equation, except the temporal term [φunits

m3 ]
∆tCFL Courant condition’s time step [s]
u, v, w velocity components [m

s
]

CD, CL mean drag and lift coefficients
T Vortex shedding period [s]
Cµ k − ε model’s constant
Sn speedup factor

1 Introduction

Turbulence is a phenomenon that occurs frequently in fluid flow, both in Nature and in almost
all industrial flows. This fact strongly motivates researchers to study this type of flows. The
wide spatial and temporal scale ranges of turbulent flows make the Direct Numerical Simula-
tion, or DNS, impractical nowadays except for a small Reynolds number. Customarily, models
that solve the Reynolds-Averaged Navier-Stokes (RANS) equations are used for simulations
of practical interest, but these have many fundamental limitations; from the standpoint of
the present paper, one of such limitations is their inability to predict both the periodic and

2



Table 1
Main parameters of Lyn and Rodi’s experiment ( [3] [4])
Parameter value
Square cylinder side H = 0.04 m
Inlet velocity U = 0.535 m/s
Reynolds number Re = UH/ν = 21400
Channel width Cw = 0.40 m
Channel height Ch = 0.56 m
Strouhal number St = 0.132

the turbulent nature of some flows. Large Eddy Simulation (LES) is an intermediate alter-
native between DNS and RANS that provides three dimensional time dependent solutions
of Navier-Stokes Equations. Although it still requires considerable computational resources,
LES is being increasingly used in practical applications due to the unrelenting advances in
computer processors. In this work, LES is implemented into PHOENICS, together with im-
proved numerical and spatial resolution schemes. The algorithm is applied to the simulation
of the vortex shedding from a square cylinder, which is an experimentally well-documented
case. In this paper 2D and 3D simulations are presented, together with a parametric evalu-
ation of the LES model and the implemented schemes. The 3D results are validated against
available experimental data, as well as against the results from other numerical simulations.
A comparison between k− ε RANS models and LES is carried out and differences are stated.
Simulations are performed in parallel on a Beowulf-type machine.

2 The problem considered

The flow concerned in this study corresponds to a turbulent flow of water around a square
cylinder, as studied experimentally by Lyn and Rody [3] and Lyn et al. [4]. The side of the
square cylinder (H) is 0.04m and it extends along the width of the channel, the cross-section
of which is 0.40x0.56m. All distances are made non-dimensional with reference to H. The
mean velocity at the inlet, U , is assumed to be 0.535m/s and it is taken as a reference value.
All velocities are made non-dimensional with this value. The Reynolds number, based on U
and H, is 21400. The shedding frequency, f , is estimated experimentally to be 1.77Hz. The
resulting Strouhal number (St = fH/U) is 0.132. A summary of the main flow parameters
is shown in table 1. Since the flow involves coherent shedding of vortices from the cylinder,
it becomes an interesting flow to use as a test case for LES. In fact, it has been selected by
many authors as a test case to validate turbulence models [23],[27], [2]. It has also featured
as a test case in some workshops about LES [28], [29]. Further details and results about the
flow and these workshops can be found in the ERCOFTAC web site.[32].

3 Modelling

3.1 Equations

The equations describing the dynamics of the flow are the equations of continuity and mo-
mentum. These are (for an incompresible flow):

∇ · (ρ~v) = 0 (1)
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∂(ρ~v)

∂t
+∇ · (ρ~v~v) = −∇p +∇ · ~~τ ′ + ρ~fm (2)

where ~~τ ′ is the viscous stress tensor and fm stands for the body forces.

3.2 Filtered equations

The objective of Large Eddy Simulations is to explicitly simulate the large scales of a turbulent
flow while modelling the small scales. This is best done by filtering the equations [1]. Using
one dimensional notation for convenience (generalization to the three-dimensional case is
straight-forward), the filtered velocity is defined by:

ui =
∫

G(x, x′)ui(x
′)dx′ (3)

where G(x, x′), the filter kernel, is a localized function which can have several shapes (for
instance, a Gaussian filter, a box filter or a cutoff filter) [9]. Every filter can be associated
with a length scale, ∆. Thus, in a general sense, eddies of size larger than ∆ are large
eddies and correspond to the resolved scales, while those smaller than ∆ are the small eddies
that will need to be modelled. When filtering is applied to the Navier-Stokes equations (for
incompressible flows), a set of equations similar to the RANS ones is obtained:

∂ūi

∂xi

= 0 (4)

∂(ρūi)

∂t
+

∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂

∂xj

[µ(
∂ui

∂xj

+
∂uj

∂xi

)] (5)

From equation 5, it can be observed that the non-linearity of the momentum equation pro-
duces an analog term to the Reynolds stress of RANS. As in RANS, one has:

uiuj 6= uiuj (6)

and the quantity on the left-hand side of the inequality cannot be computed. The balance in
this inequality results in the term:

τ s
ij = uiuj − uiuj (7)

where τ s
ij is the subgrid scale (SGS) Reynolds stress, which must be modelled. This is not

physically a stress, but rather the large scale momentum flux caused by the action of the small
or unresolved scales. Further references on LES are [7], [8], [13], [14], [24]. Upon substituting
equation 7 into 5, the next equation is obtained:

∂(ρūi)

∂t
+

∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂

∂xj

[µ(
∂ui

∂xj

+
∂uj

∂xi

) + τ s
ij] (8)

The approximation of τ s
ij in equation (8) is the main topic of LES, and it originates the

different types of LES models. In this paper, the Smagorinsky model has been used. This is
described in the next section.
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3.3 Smagorinsky Closure

This model was proposed by Smagorinsky in 1963 [11] and it is nowadays one of the most-
commonly employed. Some authors consider this model as the LES version of the well-known
mixing-length model of Prandtl [29]. Making an analogy with the effects of stress in laminar
flows, the SGS can be written as:

τ s
ij −

1

3
τ s
kkδij = −2νT Sij (9)

where νT is the eddy viscosity, while Sij refers to the strain rate in the resolved velocity field,
which is in turn defined by:

Sij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

) (10)

Using dimensional analysis, it can be proven that a reasonable form of the eddy viscosity is:

νT = (Cs∆)2|S| (11)

where |S| = (2SijSij)
1
2 ; ∆ is the length associated with the filter, this length is defined as:

∆ = (∆x∆y∆z)
1
3 . The term Cs is a parameter that can be assigned from different theories

which suggest that for isotropic turbulence, for instance, Cs ≈ 0.2. However, this parameter
can be a function of other parameters such as the Reynolds number. For example, it has been
found that, to simulate a channel flow, Cs has to be reduced from 0.2 to 0.065 which results
in the reduction of the eddy viscosity by almost an order of magnitude [8]. Additionally, in
regions close to walls, the value has to be reduced even further. An approach that has been
used successfully is the van Driest damping that is commonly used to reduce the near-wall
eddy viscosity in RANS models. This damping function acts on the Cs parameter as:

Cs = Cs0(1− e
−y+

A+ )2 (12)

where y+ is the distance from the wall in viscous wall units (y+ = yuτ/ν) and A+ is a
constant usually considered to be approximately 25. The value of Cs0 was taken as 0.1 which
is commonly used in literature for turbulence with gradients of mean velocity.

3.4 Domain, grid and boundary conditions

The computation has been carried out in a domain corresponding to that used for the Work-
shop on LES organized by Rodi and Ferziger [28], and in the second conference of ERCOFTAC
on DNS and where the problem featured LES as a test case [29], [32]. The domain is shown
in figure 1.

In this paper, 2D and 3D simulations are performed. The three-dimensionality of turbulence
cannot be questioned. It has been stated in the past ([26], [30]) that 2D LES calculations are
clearly inferior to the three-dimensional ones since certain important features of turbulence
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Fig. 1. The geometry of the square cylinder flow

are not resolved, for example, the vortex formation in the spanwise direction. However, some
authors [2] have concluded that by means of a denser 2D grid the quasi-two-dimensional
mechanism can be accurately evaluated, mainly at the regions closest to the solid walls.
This practice allows an obvious saving in computation time. The aim of the two-dimensional
simulations in this work is to evaluate by means of economical simulations the LES model,
the implemented schemes and the grid influences. Therefore, several levels of mesh size are
used in this type of simulations. The 3D grid and the domain can be seen in figure 2. The
mesh is not uniform (being denser near the square cylinder), and the number of nodes is
120x102x20. At the inflow plane constant velocity is imposed (no perturbations added). A
convective boundary condition is utilized at the outflow boundary. Logarithmic wall-functions
are applied on the cylinder walls and at lateral walls free-slip conditions are used.

3.5 Convective and temporal discretization

A second-order Van Leer scheme is selected for simulating the convective transport in the
momentum equations [31].

For the discretization in time, a third-order-implicit Adam-Moulton scheme is implemented.
According to this scheme, the value in each node of a variable φ can be calculated as:

φn = φn−1 +
∆t

12
[5f(tn, φn) + 8f(tn−1, φ

n−1)− f(tn−2, φ
n−2)] (13)

where n stands for the current time step, (n−1) and (n−2) are previous steps. The function
f(t, φ) stands for all terms of the transport equations except the temporal term. The value
of time step dt according to the Courant condition is calculated as:

∆tCFL = min[(
∆x

u
), (

∆y

v
), (

∆z

w
)] (14)
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Fig. 2. Cartesian computacional grid (120x102x20) used in the present study for LES of turbulent
flow past a square cylinder

The purpose of this calculation is to capture all time scales from the cell residence time. The
value taken is the minimum for the whole domain. The flow was simulated over 3600 time
steps, which are equivalent to roughly seven times the residence time.

3.6 Other auxiliary parameters

An extra transport equation has been set up to solve for a passive scalar called the mixture
fraction f . This scalar is assigned the value of one over one half of the inlet, and zero over
the other half, and it used to better visualize the vortical structures. The Strouhal Number
is a non-dimensional vortex-shedding frequency, and is calculated as:

St =
fH

U
(15)

where f is the vortex shedding frequency, H is the square-cylinder side and U is the reference
velocity assumed at the inlet of the domain.

The mean drag and lift coefficients, CD and CL have also been calculated, as have their rms
values, Crms

D and Crms
L . These coefficients are given by the following expressions:

CD =
Fhorizontal

1
2
ρU2

(16)

CL =
Fvertical

1
2
ρU2

(17)
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where U is the reference velocity. Forces, F , can be calculated on each side of the cylinder
as:

~F =
∫

s

~n · ~~τds (18)

where ~~τ is the stress tensor.

All these parameters are calculated by averaging over the last 12 vortex shedding cycles of
the simulation (and once a steady shedding is obtained).

3.7 Implementation in PHOENICS

The simulations have been carried out using parallel PHOENICS, version 3.5. The simulation
features and models have been defined by means of the PIL (PHOENICS Input Language) and
GROUNG facilities. Several GROUND subroutines are used to implement the LES model,
and to calculate several special sources and all the auxiliary parameters during the simulation.
The main settings of the simulation are summarized in the next sections, loosely following
the same group structure of PHOENICS.

• Time and spatial discretisation
The flag STEADY=F enables the transient formulation of PHOENICS. The timestep-size
is optionally controlled by setting TLAST=GRND. The Courant-limited explicit time-step
is computed in a GROUND module, and this can be used as reference for both implicit
and explicit calculations. The limiting timestep for the next step is calculated at the end
of the previous one on every subdomain using the convection fluxes as follows:

DTexplicit =
MASS1

max(CON1E,CON1N,CON1H)
(19)

.
By using MPI commands the limiting timestep computed locally is broadcast to all

processors in order to get the overall limit for the whole domain. The resulting value is
thereafter used in the next timestep.

The high-order, implict Adam-Moulton discretisation in time is implemented by comput-
ing and adding special sources from a GROUND subroutine. This scheme is summarised
below. Let the term f(tn, φn) stand for all the terms in a transport equation, except the
temporal term, at time level n. After the second timestep, it is possible to compute the
term f(tn, φn) as:

φn − φn−1

∆t
= f(tn, φ

n) (20)

.
The value of the function f is stored in temporary GXMAKE arrays RHSn for several

time-levels n. (For the current timestep, RHSn is not in fact available in exact form until
the end of sweeping; but it is estimated at half the number of sweeps.) The Adam-Moulton
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scheme is applied from the fourth time step by adding to the equation source term (in the
corresponding Group 13 of GROUND), calculated from the value of the stored values of
f(tn, φn) at three time levels as:

φn − φn−1

∆t
= f(tn, φ

n)
︸ ︷︷ ︸

Common formulation of PHOENICS

− 7

12
[RHSn] +

2

3
[RHSn−1]− 1

12
[RHSn−2]

︸ ︷︷ ︸
Special sources added

(21)

.
An explict, second-order-accurate Adam-Bashford scheme is implemented using similar

principles.
The setting CARTES=T is used to select a Cartesian coordinate system. The size of

the spatial domain and the grid features have also been defined by means of GRDPWR.
A power-law exponent is used to increase the grid resolution close to the square cylinder.
The high-order VANL1 scheme is applied to the momentum equations by means of the
command SCHEME.

• Variables solved and stored and flow properties
A set of five variables are solved for(P1, U1, V1, W1 and MIXF ). The whole-field option is
activated for all of them. Storage has been provided for thermodynamic and transient prop-
erties such as density (RHO1 ), and laminar and turbulent viscosities (ENUL and ENUT ).
Other variables are used to store auxiliary fields such as convection fluxes across the cell
faces (i.e. the mass flow rates CON1E, CON1N and CON1H ). By setting GENK=T and
YPLS=T, the storage of the velocity gradients and some turbulent quantities such as the
turbulent generation function (GEN1 ) and the non-dimensional wall distance (YPLS ) is
activated.

• Turbulence model
The Smagorinsky model is activated by setting ENUT=GRND and not by using the TUR-
MOD command of PHOENICS. During the simulation, group 9 section 5 of a special
GROUND subroutine is visited. In this ground module, temporary variables and arrays
(made by means of MAKE and GXMAKE ) are allocated and the necessary calculations
for this eddy-viscosity model are effected. The viscosity is calculated in this GROUND
section are calculated as:

V IST = (CS ∗DELTAfilter)
2 ∗ SQRT (GEN1) (22)

CS = CS0 ∗ (1− EXP (−Y PLS/A)) (23)

DELTAfilter = (DX ∗DY ∗DZ)
1
3 (24)

where CS0 and A are constants that are transmitted to GROUND using the RG array of
PIL.

When the k − ε model is used, the PHOENICS implementation (KEMODL) is used.

• Special sources and initial and boundary conditions
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Trivial initial conditions are normally used. The simulation is left to evolve several times
the oscillation period, T , so that the initial conditions do not have any influence on the
simulation. This requires approximately 3600 timesteps.

In group 13 of the Q1 file, the inlets and outlets are defined by means of PATCH and
COVAL commands. The special sources of the Adam-Moulton scheme are defined in this
group with a PATCH involving the whole domain and GRND as VALUE argument of
COVAL for all the solved-for variables except P1. Group 13 section 12 of GROUND is
visited in order to add the special sources, according to equation 21
. WALL commands are used to define the logarithmic wall-functions around the square
cylinder.

A GROUND subroutine dumps and stores data such as simulation time and fluid ve-
locities for post-processing. Other GROUND subroutines are implemented to compute the
drag and lift coefficients and the vorticity field. All the necessary parameters and constants
(such as the Smagorinsky constant, the positions selected to dump data and the switches
used to select the GROUND-implemented schemes) are specified by using the PIL arrays
LG, RG and IG.
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Fig. 3. Effect of the Van Leer scheme
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Fig. 4. Effect of the Adam-Moulton scheme
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Fig. 5. Effect of Smagorinsky model
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4 Results

4.1 2D Analysis of schemes and model implemented

In this section, the influences of the numerical schemes used and the Smagorinsky approach
are presented using two-dimensional grids. In figures 3, 4, 5 and 6 the vertical velocity is
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plotted at the point 2H from the domain origin (as is showed in figure 1). It can be observed
in figure 3 that the use of the Van Leer scheme predicts a different shedding frequency and the
signal shows a higher amplitude than the solution without the scheme. An analysis of the re-
sults of this simulation permits to confirm that the flow is better predicted using this scheme.

The activation of Adam-Moulton scheme (Fig. 4) initially does not produce significant changes.
The amplitude of vertical velocity is practically maintained whereas the non-scheme signal
tends to reduce it. Larger differences between signals can be noted after some time of the
simulation. Therefore it can be said that a better capture of the instabilities of the flow mo-
tion is shown. The Smagorinsky model (fig. 5) induces a cyclic signal earlier than non-model
(and scheme) signal but with a smaller amplitude. This behavior gives an idea of the effect of
including the turbulent viscosity on the simulation. The differences between signal might be a
consequence of modelling, by means of LES model, the energy dissipation from large scales to
small scales. The combination of both Van Leer and Adam-Moulton schemes and Smagorin-
sky model on the simulation (fig. 5) gives a signal with different frequency and amplitude. It
can be deduced that this behavior is largely produced by the effects of Smagorinsky model
and Van Leer scheme.

4.2 Grid influence

The mean axial velocity over the central plane of domain is shown in figure 7. Four different
2D grids are used. The results of this case show a certain dependency on the grid resolution
for the grids used. In figure 7, it is observed that upstream all the runs predict identical
results, whereas a faster recovery of mean axial velocity is predicted when the grid resolution
is higher but the mean velocity of recirculation is approximately the same in all runs.
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Fig. 7. The mean axial velocity distribution on the center plane of the cylinder from several
simulations using different 2D grids

4.3 3D Results

The most important time-averaged parameters of the flow, as defined above, are presented in
table 2, where they are also compared with experimental and numerical data available from
several authors from the ERCOFTAC database. The labels used are the same as in reference
[29]. The parameters compared are the mean drag coefficient, CD; its oscillation amplitude,
Crms

D ; the mean lift coefficient, CL, its oscillation amplitude, Crms
L ; and the Strouhal number,
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Table 2
Comparison among time-averaged square cylinder data. The labels used are the same as in in
reference [29]
Reference Label C l Crms

L CD Crms
D St

Numerical data:
Verstappen and Veldman [25] GRO 0.005 1.45 2.09 0.178 0.133
Porquie et al. [15]
- UK1 -0.02 1.01 2.2 0.14 0.13
- UK2 -0.04 1.12 2.3 0.14 0.13
- UK3 -0.05 1.02 2.23 0.13 0.13
Murakami et al. [30] NT -0.05 1.39 2.05 0.12 0.131
Wang and Vanka [5] UOI 0.04 1.29 2.03 0.18 0.13
Nozawa and Tamura [12] TIT 0.0093 1.39 2.62 0.23 0.131
Kawashima and Kawamura [16]
- ST2 0.01 1.26 2.72 0.28 0.16
- ST5 0.009 1.38 2.78 0.28 0.161
Experimental data: Lyn et al. [3] [4] EXP - - 2.1 - 0.132
This work S8A 0.03 1.4 2.01 0.22 0.139

St. It can be noted that the values of this work (label S8A) agree reasonably well with the
corresponding experimental and numerical data. The Strouhal number is a slightly greater
than experimental data but they have a similar accuracy as the numerical data. The disagree-
ments are due to differences in boundary conditions mainly wall law or damping functions
used around the square cylinder.

The mean axial velocity on the center plane of the cylinder is compared in figure 8 with
other numerical and experimental values. Labels correspond with the ones shown in table
2. In figure 9, both the experimental data and values from this work are shown. It can be
observed from these figures that upstream the data agree very well, whereas after the cylinder
the disparity of results is evident. It is important to note that the flow behavior at the inlet
is practically laminar and the transition to the turbulence takes places in the shear layers
around the square cylinder. This agrees with the experimental work of Lyn and Rody [3]. In
figure 9, it can be observed that the results from the simulations of this work agree reasonably
well with the experimental data.

An overview of the overall flow pattern can be obtained from the streamlines shown in figure
10. It can be observed that the vortex shedding motion is well captured. This is confirmed in
figure 11 where iso-vorticity contours are shown on a (streamwise) y − z plane at 1

4
and 3

4
of

the vortex shedding period (T ). In figure 12, iso-vorticity contours on the (spanwise) x − z
plane are shown. Vortical structures over the spanwise direction are weaker than the ones
developed over the streamwise direction. However, the three-dimensionality of the simulation
is evident.

In figure 13, the turbulent viscosity νT around the square cylinder is shown at two times, 1
2

and 3
4
, of the vortex shedding period (T ). It can be observed that νT contours are relevant

in the areas where the vortex shedding takes place.
The velocity vectors around the square cylinder are shown at four moments of vortex shedding
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Fig. 10. Experimental and numerical streamlines

cycle in figure 14. The recirculation zone and the vortex shedding are well captured.

4.4 Comparison between LES and RANS simulations

In this section, results obtained from simulations using time-averaged RANS equations with
the k− ε model and the implemented LES Smagorinsky model are compared. In k− ε model,
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Fig. 11. Iso-vorticity contours of the turbulent flow at two times of the vortex shedding cycle over
the streamwise direction (y − z plane, T = vortex shedding period)

Fig. 12. Iso-vorticity contours of the turbulent flow at two times of the vortex shedding cycle over
the spanwise direction (x− y plane, T = vortex shedding period)

Fig. 13. Turbulent viscosity νT around the square cylinder at two times of the vortex shedding
cycle (y − z plane, T = vortex shedding period)

νt is defined as [10]:

νT = Cµ
k2

ε
(25)

where Cµ is a constant (= 0.09). Values of k and ε are calculated from their respective trans-
port equations.

In figure 15, the vertical velocity is plotted for both k − ε model and LES simulations. Data
is obtained in a coordinate point 2H from the origin of domain. It can be observed that the
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Fig. 14. Vector velocity field at four times of the vortex shedding cycle (T = vortex shedding
period)

signal amplitude diminishes steadily with the time simulation using k−ε model. This implies
that the vortex shedding and flow instabilities tend to disappear in a short time and the flow
will become steady. On the contrary, the LES model continues capturing the vortex shedding
and flow instabilities.

The mean axial velocity on the center plane of the cylinder is presented in figure 16 for both
LES and k − ε model and for the experimental data. It can be observed that k − ε model
differs considerably from experimental data. The k−ε model predicts a slow recovery of mean
axial velocity after the cylinder.
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Fig. 15. Comparison between both RANS k − ε model and LES Smagorinsky model of the vertical
velocity coordinate point 2H from the domain origin

4.5 Parallel performance

The parallel performance of a numerical code is evaluated by the speedup factor which is
defined as:

Sn = t1/tn (26)
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Fig. 16. The mean axial velocity on the center plane of the cylinder using RANS k − ε model and
LES Smagorinsky model

where t1 is the time required to solve a problem using a single processor, tn is the time
required to solve the same problem, but using n processors. Usually, Sn is smaller than n
(ideal value) due to communication overheads or load-distribution imbalances. The parallel
speedup for this simulation is shown in figure 17. Using a single processor, the calculation
required approximately 24 CPU minutes by time step on a 120x102x20 grid. This time can be
reduced to approximately 3 minutes per time step when 12 processors are used. Additional
processors do not result in a significant speedup for the mesh used.
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Fig. 17. Parallel performance: speedup as function of number of processors, 120x102x20 grid

5 Conclusions

In this work, a Large Eddy Simulation model has been implemented into PHOENICS and has
been applied to simulate the vortex shedding past a square cylinder. The turbulent flow has
been simulated using the Smagorinsky subgrid model and high order convective and temporal
schemes. The results obtained in this study show a dependency on factors such as the grid
resolution, the boundary conditions and the used discretization schemes. It can be concluded
from the analysis of simulations that the implementation of LES model and schemes into
PHOENICS produces good results with reasonable accuracy.

In this work, it has been also confirmed the superiority (in accuracy) of LES simulations
over RANS ones. However, performing LES simulations has a larger computational cost.
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Parallelization techniques give a solution that will let in a short time to use this models with
more both practical and complex flows.
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