TEXT(Boiling 2-Phase Flow in S-bend Duct:W886 TITLE DISPLAY This case simulates the steady flow of a two-phase mixture in a 2-D duct, with heated walls. The mixture has uniform composition at inlet; but the distribution changes with distance downstream, for two reasons, namely:- 1. the denser fluid moves to the outside of the bends; and 2. dense fluid changes into light, through boiling near the heated walls. You may determine whether the activate both effects by your answer the following question. This Q1 contains PHOTON USE commands. ENDDIS GROUP 1. Run title REAL(REYNO,WIN,DIAM) REYNO=3.E3;DIAM=.3;WIN=1.0 REYNO GROUP 6. Body-fitted coordinates or grid distortion BFC=T;NONORT=T REAL(L1,L2,L3,RAD1,RAD2);INTEGER(NZ1,NZ2,NZ3,NZ4,NZ5,IZ1,IZ2) L1=1;L2=1;L3=1 RAD1=.2;RAD2=.2 NZ1=6;NZ2=10;NZ3=6;NZ4=10;NZ5=6 NZ=NZ1+NZ2+NZ3+NZ4+NZ5 GSET(D,1,10,NZ,0.1,DIAM,1) IZ2=NZ1+1 GSET(C,K:IZ2:,F,K1,+,0,0,L1,INC,-1.5) IZ1=IZ2;IZ2=IZ1+NZ2 GSET(C,K:IZ2:,F,K:IZ1:,RX,-3.14159,DIAM+RAD1,L1,INC,1) IZ1=IZ2;IZ2=IZ1+NZ3 GSET(C,K:IZ2:,F,K:IZ1:,+,0,0,-L2,INC,S1.5) IZ1=IZ2;IZ2=IZ1+NZ4 GSET(C,K:IZ2:,F,K:IZ1:,RX,3.14159,2*(DIAM+RAD1)+RAD2,L1-L2,INC,1) IZ1=IZ2;IZ2=IZ1+NZ5 GSET(C,K:IZ2:,F,K:IZ1:,+,0,0,L3,INC,1.5) ** Set wup=t to account better for the high curvature of the w resolute... WUP=T GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1);SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N) ONEPHS=F SOLVE(V2,W2,R1,R2,H1,H2) SOLUTN(V2,P,P,P,P,P,N);SOLUTN(W2,P,P,P,P,P,N) SOLUTN(R1,P,P,P,P,P,N);SOLUTN(R2,P,P,P,P,P,N) SOLUTN(H1,P,P,P,P,P,N);SOLUTN(H2,P,P,P,P,P,N) STORE(MDOT) GROUP 9. Properties of the medium (or media) ENUL=WIN*DIAM/REYNO;ENUT=500*ENUL RHO1=750;RHO2=36 PHINT(H1)=4E5;PHINT(H2)=2.5E6 GROUP 10. Inter-phase-transfer processes and properties CINT(H1)=10;CINT(H2)=10;CMDOT=HEATBL;CFIPS=1E2 GROUP 11. Initialization of variable or porosity fields FIINIT(P1)=1.E-10;FIINIT(W1)=WIN;FIINIT(W2)=WIN REAL(R1IN,R2IN) R1IN=0.99;R2IN=1-R1IN FIINIT(R1)=R1IN;FIINIT(R2)=R2IN FIINIT(H2)=PHINT(H2);FIINIT(H1)=PHINT(H1) GROUP 13. Boundary conditions and special sources Inlet velocities and volume fractions are the same for both phases INLET(INLET,LOW,1,1,1,NY,1,1,1,1) VALUE(INLET,P1,R1IN*RHO1*WIN);VALUE(INLET,W1,WIN) VALUE(INLET,H1,PHINT(H1));VALUE(INLET,P2,R2IN*RHO2*WIN) VALUE(INLET,W2,WIN);VALUE(INLET,H2,PHINT(H2)) PATCH(OUTLET,HIGH,1,1,1,NY,NZ,NZ,1,1) COVAL(OUTLET,P1,1.E3*RHO1,0.0);COVAL(OUTLET,P2,1.E3*RHO2,0.0) COVAL(OUTLET,H1,ONLYMS,SAME);COVAL(OUTLET,H2,ONLYMS,SAME) MESG(ACTIVATE HEAT TRANSFER? (Y/N) READVDU(ANS,CHAR,N) IF(:ANS:.EQ.Y) THEN + WALL(TOP,NORTH,1,1,NY,NY,1,NZ,1,1) + COVAL(TOP,H1,LOGLAW,4.5E5) + WALL(BOT,SOUTH,1,1,1,1,1,NZ,1,1) + COVAL(BOT,H1,LOGLAW,4.5E5) + PATCH(HEATER,NORTH,1,1,NY,NY,NZ1+(NZ2/2)+1,NZ1+NZ2,1,1) + COVAL(HEATER,H1,FIXFLU,1E5) ELSE + SOLUTN(H1,Y,N,N,N,N,N) + SOLUTN(H2,Y,N,N,N,N,N) ENDIF GROUP 15. Termination of sweeps LSWEEP=200;SELREF=T;RESFAC=0.1 GROUP 17. Under-relaxation devices RELAX(P1,LINRLX,0.5) REAL(DTF,FAC) DTF=(L1/NZ1)/WIN FAC=10 RELAX(V1,FALSDT,0.1*DTF);RELAX(W1,FALSDT,FAC*DTF) RELAX(V2,FALSDT,0.1*DTF);RELAX(W2,FALSDT,FAC*DTF) RELAX(H1,FALSDT,FAC*DTF);RELAX(H2,FALSDT,FAC*DTF) RELAX(MDOT,LINRLX,0.5) GROUP 22. Spot-value print-out IYMON=5;IZMON=32 Activate graphical convergence monitoring TSTSWP=-1 GROUP 23. Field print-out and plot control photon use p;;; gr x 1 msg dense-phase volume-fraction contours con r1 x 1 fi;0.1 msg press return for dense-phase ucrt pause; con off; red msg dense-phase ucrt con vcrt x 1 fi;0.1 msg press return for dense-phase wcrt pause; con off; red msg dense-phase wcrt con wcrt x 1 fi;0.1 msg press return for p1 pause; con off; red msg pressure con p1 x 1 fi;0.1 msg press return for dense-phase velocity vectors pause; con off; red; gr off;gr ou x 1; red; vec x 1 sh enduse