TEXT(RSTM_1DY DEVELOPED CHANNEL FLOW :T600
TITLE
DISPLAY
The problem considered is 1dy fully-developed turbulent
flow in a channel at a Reynolds number of 5.E4 with heat
and mass transfer. The turbulence is simulated by use of
the Reynolds stress transport model (RSTM), and optionally
by use of the k-e model. For heat and scalar transport with
the RSTM, one of the following models may be employed: a
simple gradient-diffusion model (IRSMSM=0); a generalised
gradient-diffusion model (IRSMSM=1); or a full transport
model (IRSMSM=2). The laminar Prandtl number is 3.0, and the
energy equation may be solved via H1 or TEM1.
ENDDIS
For fully-smooth conditions channel-flow data indicates that
the friction factor f = 0.018 and the Nusselt number Nu =392.
The Petukhov correlation ( see below ) is used to estimate
the Nusselt number. The PHOENICS predictions yield the
following results:
k-eps model f = 0.018 Nu = 401
RSTM gradient-diffusion model f = 0.018 Nu = 391
RSTM generalised-diffusion model f = 0.018 Nu = 412
RSTM full transport model f = 0.018 Nu = 409.
These values agree closely with the data.
The PIL variable WALPRN has been set to T, thereby activating
printout of the local friction factor (sloc) and Stanton
number (Stloc) in the RESULT file. In order to convert these
values to f and Nu above, the following relations should be
used:
f = 8.*sloc*(W1(NY)/WIN)**2
Nu = REYH*PRNDTL(H1)*Stloc*W1(NY)*(TW-TEM1(NY))/[WIN*(TW-TB)]
where TB is the bulk temperature printed in the RESULT file. The
expected values are: sloc=4.923E-3 and Stloc=2.512E-3.
BOOLEAN(KEMOD,HEAT);CHAR(CH1); REAL(DHYDR,DELT,US,REYH)
REAL(HGHT,WIN,REY,TKEIN,EPSIN,MIXL,FRIC,DPDZ,MASIN,DTF)
** CH1=H1 activates solution of the energy eqn via H1
=TEM1 '' '' '' '' '' '' '' TEM1
CH1=TEM1
** KEMOD =T selects k-eps solution
** HEAT =T activates heat/scalar transport
** IRSMSM=0 simple-gradient model for heat/scalar transport
=1 generalised-gradient model
=2 flux transport model
KEMOD=F;HEAT=T;IRSMSM=2
** NB: The the hydraulic diameter is equal to 2.*duct height,
so that pipe-flow correlations still apply
with diameter replaced by 2.*height
HGHT=1.0;WIN=1.0; REY=5.E4;DHYDR=2.*HGHT; REYH=2.*REY
FRIC=1./(1.82*LOG10(REYH)-1.64)**2
US=WIN*(FRIC/8.)**0.5;DPDZ=0.5*RHO1*WIN*WIN*FRIC/DHYDR
REY
FRIC
US
DPDZ
TKEIN=0.25*WIN*WIN*FRIC
MIXL=0.09*0.5*HGHT;EPSIN=0.1643*TKEIN**1.5/MIXL
ENUL=WIN*HGHT/REY;DELT=2.*40.*ENUL/US;NREGY=2; REGEXT(Y,0.5*HGHT)
IREGY=1;GRDPWR(Y,29,0.5*HGHT-DELT,0.8);IREGY=2;GRDPWR(Y,1,DELT,1.0)
SOLVE(W1)
IF(HEAT) THEN
+ SOLVE(:CH1:);SOLVE(SC1,SC2)
ENDIF
** prescribed pressure-force for w1-equation
PATCH(PFOR,VOLUME,1,1,1,NY,1,NZ,1,1);COVAL(PFOR,W1,FIXFLU,DPDZ)
IF(KEMOD) THEN
+ TURMOD(KEMODL);STORE(ENUT,LEN1);IRSMSM=0
+ PATCH(WAL1,NWALL,1,1,NY,NY,1,NZ,1,1)
+ COVAL(WAL1,W1,LOGLAW,0.0);COVAL(WAL1,EP,LOGLAW,LOGLAW)
ELSE
+ PATCH(WAL1,NWALL,1,1,NY,NY,1,NZ,1,1);COVAL(WAL1,W1,1.0,0.0)
+ STORE(V1,KE,DWDY,PVW,PW2,PV2,PU2,DVW)
+ STORE(PK,EPDK,FWAL,VWDK,U2DK,V2DK,W2DK)
+ DTF=0.02;TURMOD(REYSTRS,DTF,WAL1)
+ PATCH(SMPLS,SOUTH,1,1,1,1,1,NZ,1,1);COVAL(SMPLS,VWRS,GRND1,0.0)
ENDIF
** deactivate convection for single-slab solution
TERMS(W1,P,N,P,P,P,P);TERMS(EP,P,N,P,P,P,P)
IF(KEMOD) THEN
+ COVAL(WAL1,KE,LOGLAW,LOGLAW);TERMS(KE,P,N,P,P,P,P)
ELSE
+ TERMS(U2RS,P,N,P,P,P,P);TERMS(V2RS,P,N,P,P,P,P)
+ TERMS(W2RS,P,N,P,P,P,P);TERMS(VWRS,P,N,P,P,P,P)
ENDIF
FIINIT(W1)=WIN;FIINIT(V1)=0.0;FIINIT(KE)=TKEIN;FIINIT(EP)=EPSIN
REAL(FLOW);FLOW=RHO1*WIN*HGHT
RESREF(W1)=1.E-12*FLOW*WIN; RESREF(EP)=1.E-12*FLOW*EPSIN
IF(KEMOD) THEN
+ RELAX(W1,FALSDT,1.E2)
+ RELAX(EP,FALSDT,10.0); RELAX(KE,FALSDT,10.0)
+ RESREF(KE)=1.E-12*FLOW*TKEIN
ELSE
+ FIINIT(W2RS)=2.*FIINIT(KE)/3.;FIINIT(V2RS)=2.*FIINIT(KE)/3.
+ FIINIT(U2RS)=2.*FIINIT(KE)/3.;FIINIT(VWRS)=0.3*FIINIT(KE)
+ RELAX(W1,FALSDT,0.3)
+ RESREF(U2RS)=1.E-12*FLOW*FIINIT(U2RS)
+ RESREF(V2RS)=1.E-12*FLOW*FIINIT(V2RS)
+ RESREF(W2RS)=1.E-12*FLOW*FIINIT(W2RS)
+ RESREF(VWRS)=1.E-12*FLOW*FIINIT(VWRS)
ENDIF
IF(KEMOD) THEN
+ LSWEEP=15;NPLT=5;LITHYD=10
ELSE
+ LSWEEP=160;LITHYD=8;NPLT=20
+ OUTPUT(PU2,N,N,N,N,N,N);OUTPUT(PV2,N,N,N,N,N,N)
ENDIF
OUTPUT(V1,N,N,N,N,N,N);NYPRIN=1;IYMON=NY-1;TSTSWP=-1
YPLS=T;WALPRN=T
** prescribe energy flow from slab and fluid specific heat
estimated from Dittus-Boelter Nu=0.023*Re**0.8*Pr**0.4
with (Tw-Tb)=5.0
IF(HEAT) THEN
+ REAL(NUSS,COND,CP,QIN,DTDZ,AWAL,TW,XR,DTSC,HW,DSDZ)
+ PRNDTL(H1)=3.0;TW=10.
+ PRNDTL(SC1)=PRNDTL(H1);PRNDTL(SC2)=PRNDTL(H1)
+ NUSS=0.023*REYH**0.8*PRNDTL(H1)**0.4
+ CP=3.0;COND=RHO1*CP*ENUL/PRNDTL(H1)
+ CP1=CP
** AWAL is wall surface area per unit length
+ AWAL=0.5*HGHT*XULAST;QIN=NUSS*5.0*COND/DHYDR
+ NUSS
+ QIN
+ DSDZ=QIN*AWAL/(CP*FLOW);DTDZ=CP*DSDZ
IF(:CH1:.EQ.H1) THEN
+ TMP1A=0.0;TMP1B=1./CP;TMP1=LINH;HW=CP*TW
+ STORE(TEMP);OUTPUT(TEMP,Y,Y,Y,Y,Y,Y)
ENDIF
IF(:CH1:.EQ.TEM1) THEN
+ HW=TW
ENDIF
+ AWAL
+ TERMS(:CH1:,N,N,P,P,P,P)
+ TERMS(SC1,N,N,P,P,P,P);TERMS(SC2,N,N,P,P,P,P)
+ FIINIT(:CH1:)=0.5*HW;FIINIT(SC1)=0.5*TW
+ COVAL(WAL1,:CH1:,LOGLAW,HW);COVAL(WAL1,SC1,LOGLAW,TW)
+ COVAL(WAL1,SC2,LOGLAW,TW)
** temperature source/sink term for fully-developed flow
+ PATCH(FDFCWT,PHASEM,1,NX,1,NY,1,NZ,1,1)
+ COVAL(FDFCWT,:CH1:,DTDZ,HW);COVAL(FDFCWT,SC1,DSDZ,TW)
+ COVAL(FDFCWT,SC2,DSDZ,TW);DTSC=20.
+ FDFSOL=T; RESREF(:CH1:)=1.E-12*QIN*AWAL*ZWLAST
+ RESREF(SC1)=RESREF(:CH1:); RESREF(SC2)=RESREF(SC1)
** compute expected Nusselt number from Petukhov
correlation and printout from satellite
+ XR=1.07+12.7*(PRNDTL(H1)**.666-1.)*(FRIC/8.)**0.5
+ NUSS=REYH*PRNDTL(H1)*FRIC/(8.*XR)
+ NUSS
+ COND
+ DHYDR
IF(IRSMSM.EQ.1) THEN
+ DTSC=1.0;STORE(DSDY)
+ RELAX(VTRS,LINRLX,0.2); RELAX(VSC1,LINRLX,0.2)
+ RELAX(VSC2,LINRLX,0.2)
+ OUTPUT(VTRS,Y,Y,Y,Y,Y,Y);FIINIT(:CH1:)=0.9*HW
+ FIINIT(SC1)=0.9*TW
ENDIF
IF(IRSMSM.EQ.2) THEN
+ TERMS(VTRS,N,N,P,P,P,P);TERMS(VSC1,N,N,P,P,P,P)
+ TERMS(VSC2,N,N,P,P,P,P);STORE(DSDY)
+ COVAL(SMPLS,VTRS,GRND1,0.0);DTSC=10.
+ COVAL(SMPLS,VSC1,GRND1,0.0);COVAL(SMPLS,VSC2,GRND1,0.0)
ENDIF
+ FIINIT(SC2)=FIINIT(SC1); RELAX(:CH1:,FALSDT,DTSC)
+ RELAX(SC1,FALSDT,DTSC); RELAX(SC2,FALSDT,DTSC)
IF(:CH1:.EQ.TEM1) THEN
PRNDTL(TEM1)=CONDFILE;
STORE(PRPS);FIINIT(PRPS)=35
** mat no. rho enul cp kond expan
** 1 air
CSG10='q1'
MATFLG=T;NMAT=1
35 1. 2.E-5 3.0 2.E-5 0
ENDIF
ENDIF
** Expected values
FLOW