GROUP 1. Run title and other preliminaries
TEXT(2S K-E MODEL_PARABOLIC PLANE JET   :T403
TITLE
  DISPLAY
  The problem considered is the submerged free heated turbulent
  plane jet in essentially stagnant surroundings, as described
  under PHOENICS Library cases 150-152. The calculations are
  started at the jet discharge, and the parabolic marching
  integration is carried out until both the mean flow and
  turbulence profiles become self similar.
 
  The calculations are made with 30 grid cells across the jet and
  a forward step size of 5% (DZW1) of the local jet width. The y-
  extent of the grid is set equal to the slot width at z = 0,
  thereafter being caused to increase linearly with downstream
  distance so as to accommodate the lateral spread of the jet. For
  testing purposes the number of forward steps is set equal to 20,
  but for the attainment of self-similarity, it is recommended that
  NZ is set equal to 240, so that the marching integration is
  terminated at an axial distance of about 70 slot width's from the
  jet discharge.
  ENDDIS
 
  Calculations are performed with both the standard k-e model, and
  also with the 2-scale k-e model. The turbulent Prandtl number is
  set equal to 0.65.
 
  The experimental data indicate velocity and temperature half-
  width spreading rates of 0.11 and 0.14, respectively, in the
  self-similar region of the jet. The present calculation with
  the standard k-e model predicts values of 0.11 and 0.14,
  respectively, which are in excellent agreement with the
  experimental values. The 2-scale k-e model produces spreading
  rates of 0.092 and 0.16 respectively.
 
BOOLEAN(TSKE);TSKE=T
REAL(WJET,REYNO,HSLOT,TJET,TFREE,TKEIN,EPSIN)
REYNO=5.E5;HSLOT=0.1;WJET=10.;TJET=1.0;TFREE=0.0
TKEIN=WJET*WJET*0.0001;EPSIN=TKEIN**1.5/(0.035*HSLOT*.1643)
    GROUP 4. Y-direction grid specification
NY=30;YVLAST=HSLOT;YFRAC(1)=-30.;YFRAC(2)=1.0/30.
   *** Linear grid expansion with slope DYGDZ
REAL(DYGDZ);DYGDZ=0.24;AZYV=1.0;ZWADD=HSLOT/DYGDZ
    GROUP 5. Z-direction grid specification
PARAB=T;NZ=240;AZDZ=PROPY
    GROUP 7. Variables stored, solved & named
NAME(H1)=TEMP;STORE(ENUT,LEN1);SOLVE(P1,V1,W1,TEMP)
IF(TSKE) THEN
+ TURMOD(TSKEMO)
ELSE
+ TURMOD(KEMODL)
ENDIF
    GROUP 8. Terms (in differential equations) & devices
DIFCUT=0.0;TERMS(TEMP,N,Y,Y,Y,Y,Y)
    GROUP 9. Properties of the medium (or media)
ENUL=WJET*HSLOT/REYNO;PRT(TEMP)=0.65
    GROUP 11. COVALialization of variable or porosity fields
IF(TSKE) THEN
+ REAL(KTDKP,KPIN,KTIN);KTDKP=0.25
+ KPIN=TKEIN/(1.+KTDKP);KTIN=KTDKP*KPIN
+ FIINIT(KE)=TKEIN;FIINIT(KP)=KPIN;FIINIT(KT)=KTIN
+ FIINIT(EP)=EPSIN;FIINIT(ET)=EPSIN
ENDIF
    GROUP 13. Boundary conditions and special sources
     1. Outer Boundary-- free stream
PATCH(HIGHY,NORTH,1,1,NY,NY,1,NZ,1,1)
COVAL(HIGHY,P1,1.E4,0.0);COVAL(HIGHY,W1,ONLYMS,0.0)
COVAL(HIGHY,V1,ONLYMS,0.0);COVAL(HIGHY,TEMP,ONLYMS,TFREE)
COVAL(HIGHY,W1,ONLYMS,0.0);COVAL(HIGHY,EP,ONLYMS,1.E-10)
     2. Inlet Boundary-- uniform velocity and temperature at slot
PATCH(SLOT,LOW,1,1,1,NY/2,1,1,1,1)
COVAL(SLOT,P1,FIXFLU,RHO1*WJET);COVAL(SLOT,W1,ONLYMS,WJET)
COVAL(SLOT,TEMP,ONLYMS,TJET);COVAL(SLOT,EP,ONLYMS,EPSIN)
     3. Inlet Boundary-- uniform velocity and temperature
PATCH(OUTSIDE,LOW,1,1,NY/2+1,NY,1,1,1,1)
COVAL(OUTSIDE,P1,FIXFLU,1.E-4*RHO1*WJET)
COVAL(OUTSIDE,W1,ONLYMS,1.E-4*WJET)
COVAL(OUTSIDE,TEMP,ONLYMS,TJET);COVAL(OUTSIDE,EP,ONLYMS,1.E-10)
IF(TSKE) THEN
+ COVAL(HIGHY,KP,ONLYMS,1.E-10);COVAL(HIGHY,KT,ONLYMS,1.E-10)
+ COVAL(HIGHY,ET,ONLYMS,1.E-10)
+ COVAL(SLOT,KP,ONLYMS,KPIN);COVAL(SLOT,KT,ONLYMS,KTIN)
+ COVAL(SLOT,ET,ONLYMS,EPSIN)
+ COVAL(OUTSIDE,KP,ONLYMS,1.E-10);COVAL(OUTSIDE,KT,ONLYMS,1.E-10)
+ COVAL(OUTSIDE,ET,ONLYMS,1.E-10)
ELSE
+ COVAL(HIGHY,KE,ONLYMS,1.E-10)
+ COVAL(SLOT,KE,ONLYMS,TKEIN)
+ COVAL(OUTSIDE,KE,ONLYMS,1.E-10)
ENDIF
    GROUP 14. Downstream pressure for PARAB=T
IPARAB=1
    GROUP 16. Termination of iterations
LITHYD=40;selref=t;resfac=0.1
    GROUP 17. Under-relaxation devices
RELAX(V1,FALSDT,10.0); RELAX(W1,FALSDT,10.0)
RELAX(TEMP,FALSDT,10.0); RELAX(EP,FALSDT,10.0)
IF(TSKE) THEN
+ RELAX(V1,FALSDT,1.0); RELAX(W1,FALSDT,1.0)
+ RESREF(KT)=1.E-6; RESREF(KP)=1.E-6; RESREF(ET)=1.E-6
+ RELAX(KT,FALSDT,0.1); RELAX(KP,FALSDT,0.1)
+ RELAX(ET,FALSDT,0.1); RELAX(EP,FALSDT,0.1)
+ fiinit(enut)=1.e-3;relax(enut,linrlx,0.5)
ELSE
+ RESREF(KE)=1.E-6; RELAX(KE,FALSDT,10.0)
ENDIF
    GROUP 19. Data communicated by SATELLITE to GROUND
DZW1=0.05;DWDY=T;TSTSWP=-1
    GROUP 21. Print-out of variables
OUTPUT(P1,Y,Y,Y,Y,Y,Y);OUTPUT(V1,Y,Y,Y,Y,Y,Y)
OUTPUT(W1,Y,Y,Y,Y,Y,Y);OUTPUT(TEMP,Y,Y,Y,Y,Y,Y)
    GROUP 22. Monitor print-out
IZMON=NZ/2;IYMON=NY/2;ITABL=1;NPLT=1;IPLTL=LITHYD
  ** parabolic file dumping
IDISPA=1;IDISPB=nz/20;IDISPC=NZ
    GROUP 23. Field print-out and plot control
ORSIZ=0.4;PATCH(IZEQNZ,PROFIL,1,1,1,NY,NZ,NZ,1,1)
PLOT(IZEQNZ,W1,0.0,0.0);PLOT(IZEQNZ,TEMP,0.0,0.0)
PLOT(IZEQNZ,ENUT,0.0,0.0);NZPRIN=NZ
PATCH(IYEQ1,PROFIL,1,1,1,1,1,NZ,1,1)
PLOT(IYEQ1,W1,0.0,0.0);PLOT(IYEQ1,TEMP,0.0,0.0)
PLOT(IYEQ1,ENUT,0.0,0.0);NZPRIN=NZ
    GROUP 24. Dumps for restarts