GROUP 1. Run title and other preliminaries TEXT(2S K-E MODEL_PARABOLIC PLANE JET :T403 TITLE DISPLAY The problem considered is the submerged free heated turbulent plane jet in essentially stagnant surroundings, as described under PHOENICS Library cases 150-152. The calculations are started at the jet discharge, and the parabolic marching integration is carried out until both the mean flow and turbulence profiles become self similar. The calculations are made with 30 grid cells across the jet and a forward step size of 5% (DZW1) of the local jet width. The y- extent of the grid is set equal to the slot width at z = 0, thereafter being caused to increase linearly with downstream distance so as to accommodate the lateral spread of the jet. For testing purposes the number of forward steps is set equal to 20, but for the attainment of self-similarity, it is recommended that NZ is set equal to 240, so that the marching integration is terminated at an axial distance of about 70 slot width's from the jet discharge. ENDDIS Calculations are performed with both the standard k-e model, and also with the 2-scale k-e model. The turbulent Prandtl number is set equal to 0.65. The experimental data indicate velocity and temperature half- width spreading rates of 0.11 and 0.14, respectively, in the self-similar region of the jet. The present calculation with the standard k-e model predicts values of 0.11 and 0.14, respectively, which are in excellent agreement with the experimental values. The 2-scale k-e model produces spreading rates of 0.092 and 0.16 respectively. BOOLEAN(TSKE);TSKE=T REAL(WJET,REYNO,HSLOT,TJET,TFREE,TKEIN,EPSIN) REYNO=5.E5;HSLOT=0.1;WJET=10.;TJET=1.0;TFREE=0.0 TKEIN=WJET*WJET*0.0001;EPSIN=TKEIN**1.5/(0.035*HSLOT*.1643) GROUP 4. Y-direction grid specification NY=30;YVLAST=HSLOT;YFRAC(1)=-30.;YFRAC(2)=1.0/30. *** Linear grid expansion with slope DYGDZ REAL(DYGDZ);DYGDZ=0.24;AZYV=1.0;ZWADD=HSLOT/DYGDZ GROUP 5. Z-direction grid specification PARAB=T;NZ=240;AZDZ=PROPY GROUP 7. Variables stored, solved & named NAME(H1)=TEMP;STORE(ENUT,LEN1);SOLVE(P1,V1,W1,TEMP) IF(TSKE) THEN + TURMOD(TSKEMO) ELSE + TURMOD(KEMODL) ENDIF GROUP 8. Terms (in differential equations) & devices DIFCUT=0.0;TERMS(TEMP,N,Y,Y,Y,Y,Y) GROUP 9. Properties of the medium (or media) ENUL=WJET*HSLOT/REYNO;PRT(TEMP)=0.65 GROUP 11. COVALialization of variable or porosity fields IF(TSKE) THEN + REAL(KTDKP,KPIN,KTIN);KTDKP=0.25 + KPIN=TKEIN/(1.+KTDKP);KTIN=KTDKP*KPIN + FIINIT(KE)=TKEIN;FIINIT(KP)=KPIN;FIINIT(KT)=KTIN + FIINIT(EP)=EPSIN;FIINIT(ET)=EPSIN ENDIF GROUP 13. Boundary conditions and special sources 1. Outer Boundary-- free stream PATCH(HIGHY,NORTH,1,1,NY,NY,1,NZ,1,1) COVAL(HIGHY,P1,1.E4,0.0);COVAL(HIGHY,W1,ONLYMS,0.0) COVAL(HIGHY,V1,ONLYMS,0.0);COVAL(HIGHY,TEMP,ONLYMS,TFREE) COVAL(HIGHY,W1,ONLYMS,0.0);COVAL(HIGHY,EP,ONLYMS,1.E-10) 2. Inlet Boundary-- uniform velocity and temperature at slot PATCH(SLOT,LOW,1,1,1,NY/2,1,1,1,1) COVAL(SLOT,P1,FIXFLU,RHO1*WJET);COVAL(SLOT,W1,ONLYMS,WJET) COVAL(SLOT,TEMP,ONLYMS,TJET);COVAL(SLOT,EP,ONLYMS,EPSIN) 3. Inlet Boundary-- uniform velocity and temperature PATCH(OUTSIDE,LOW,1,1,NY/2+1,NY,1,1,1,1) COVAL(OUTSIDE,P1,FIXFLU,1.E-4*RHO1*WJET) COVAL(OUTSIDE,W1,ONLYMS,1.E-4*WJET) COVAL(OUTSIDE,TEMP,ONLYMS,TJET);COVAL(OUTSIDE,EP,ONLYMS,1.E-10) IF(TSKE) THEN + COVAL(HIGHY,KP,ONLYMS,1.E-10);COVAL(HIGHY,KT,ONLYMS,1.E-10) + COVAL(HIGHY,ET,ONLYMS,1.E-10) + COVAL(SLOT,KP,ONLYMS,KPIN);COVAL(SLOT,KT,ONLYMS,KTIN) + COVAL(SLOT,ET,ONLYMS,EPSIN) + COVAL(OUTSIDE,KP,ONLYMS,1.E-10);COVAL(OUTSIDE,KT,ONLYMS,1.E-10) + COVAL(OUTSIDE,ET,ONLYMS,1.E-10) ELSE + COVAL(HIGHY,KE,ONLYMS,1.E-10) + COVAL(SLOT,KE,ONLYMS,TKEIN) + COVAL(OUTSIDE,KE,ONLYMS,1.E-10) ENDIF GROUP 14. Downstream pressure for PARAB=T IPARAB=1 GROUP 16. Termination of iterations LITHYD=40;selref=t;resfac=0.1 GROUP 17. Under-relaxation devices RELAX(V1,FALSDT,10.0); RELAX(W1,FALSDT,10.0) RELAX(TEMP,FALSDT,10.0); RELAX(EP,FALSDT,10.0) IF(TSKE) THEN + RELAX(V1,FALSDT,1.0); RELAX(W1,FALSDT,1.0) + RESREF(KT)=1.E-6; RESREF(KP)=1.E-6; RESREF(ET)=1.E-6 + RELAX(KT,FALSDT,0.1); RELAX(KP,FALSDT,0.1) + RELAX(ET,FALSDT,0.1); RELAX(EP,FALSDT,0.1) + fiinit(enut)=1.e-3;relax(enut,linrlx,0.5) ELSE + RESREF(KE)=1.E-6; RELAX(KE,FALSDT,10.0) ENDIF GROUP 19. Data communicated by SATELLITE to GROUND DZW1=0.05;DWDY=T;TSTSWP=-1 GROUP 21. Print-out of variables OUTPUT(P1,Y,Y,Y,Y,Y,Y);OUTPUT(V1,Y,Y,Y,Y,Y,Y) OUTPUT(W1,Y,Y,Y,Y,Y,Y);OUTPUT(TEMP,Y,Y,Y,Y,Y,Y) GROUP 22. Monitor print-out IZMON=NZ/2;IYMON=NY/2;ITABL=1;NPLT=1;IPLTL=LITHYD ** parabolic file dumping IDISPA=1;IDISPB=nz/20;IDISPC=NZ GROUP 23. Field print-out and plot control ORSIZ=0.4;PATCH(IZEQNZ,PROFIL,1,1,1,NY,NZ,NZ,1,1) PLOT(IZEQNZ,W1,0.0,0.0);PLOT(IZEQNZ,TEMP,0.0,0.0) PLOT(IZEQNZ,ENUT,0.0,0.0);NZPRIN=NZ PATCH(IYEQ1,PROFIL,1,1,1,1,1,NZ,1,1) PLOT(IYEQ1,W1,0.0,0.0);PLOT(IYEQ1,TEMP,0.0,0.0) PLOT(IYEQ1,ENUT,0.0,0.0);NZPRIN=NZ GROUP 24. Dumps for restarts