TALK=T;RUN( 1, 1) ** LOAD(x311) from the x Input Library GROUP 1. Run title and other preliminaries TEXT(REALISABLE_KE SCAL_WF BLUNT PLATE:T311 TITLE DISPLAY The case considered is 2D incompressible, turbulent flow past a thick flat rectangular plate with a sharp leading edge, as studied experimentally by Djilali,N. & Gartshore,I.S., "Turbulent flow around a bluff rectangular plate, Part I: Experimental Investigation", Journal of Fluid Mechanics, Vol.113, pp51-59, (1991). The flow separates at the leading edge of the plate, and then reattaches further downstream to form a long separation zone on top of the plate. The thickness of the plate H is taken as 0.1m, and the working fluid is air at standard temperature and pressure.The flow Reynolds number based on the free-stream velocity and plate thickness H is 50,000. The inlet and outlet planes are located 10H upstream and downstream of the leading edge of the plate. The height of the solution domain is taken as 10H, and for simplicity a zero flux boundary is assumed here. Symmetry is exploited so that only one half of the flow is simulated. A fixed-pressure boundary condition is applied at the outlet, and uniform flow profiles are specified at the inlet. Scalable wall functions are used at the walls of the plate. The default simulation is made with the realisable k-e model, but the case can also be run with the standard k-e and k-w models, the revised Wilcox k-w, Menter k-w and k-w-SST model, and the following k-e variants: Chen-Kim, RNG, Kato-Launder, Murakami et al. The measured and predicted reattachment points are listed below: KE RKE CK RNG MMK KL KW KWR KWM SST EXPT Xr/H= 1.1 4.8 4.7 3.9 3.2 3.2 0.73 3.7 0.94 5.1 4.7 These results are not grid independent. It can be seen that the standard k-e and k-w models seriously underestimate the separation length. This is because this model predicts excessive turbulence production at the stagnation zone on the front of the plate, and the high turbulence levels are then convected into the separation zone. The other models perform much better, with the revised Wilcox, Chen-Kim and Realisable models showing close agreement with the measurement. ENDDIS This AUTOPLOT sequence provides a plot of the axial velocity U1 along the top of the plate against axial distance normalised by the step height. The axial coordinate 0.0 corresponds to the front of the step. The reattachment point corresponds the axial location where U1 changes from negative to positive. AUTOPLOT USE file phida 3 da 1 u1 y 11 divide x .1 1 shift x -10 1 colf 1 level y 0;level x 0 scale x 0 6 redraw msg Velocity (U1) profile msg Press e to END ENDUSE CHAR(CTURB,TLSC) BOOLEAN(KWMOD);KWMOD=F REAL(THICKNESS,DHEIGHT,DLEN,PLEN,PHEIGHT,REYNO,UIN) REAL(TKEIN,EPSIN,MIXL,FRIC) INTEGER(NYP,NYF,NXF,NXP) ** Calculation of domain specifications THICKNESS=0.1;PHEIGHT=0.5*THICKNESS DHEIGHT=10.*THICKNESS;PLEN=10.*THICKNESS;DLEN=20.*THICKNESS REYNO=5.0E4;UIN=7.3 TKEIN=(0.01*UIN)**2;MIXL=0.05*DHEIGHT EPSIN=0.1643*TKEIN**1.5/MIXL GROUP 3. X-direction grid specification GROUP 4. Y-direction grid specification NXF=60;NXP=55;NYP=10;NYF=65 NREGX=2 IREGX=1;GRDPWR(X,NXF,-(DLEN-PLEN),-1.04) IREGX=2;GRDPWR(X,NXP,-PLEN,1.04) NREGY=2 IREGY=1;GRDPWR(Y,NYP,-PHEIGHT,1.04) IREGY=2;GRDPWR(Y,NYF,-(DHEIGHT-PHEIGHT),1.04) GROUP 7. Variables stored, solved & named SOLVE(P1,U1,V1);STORE(ENUT,EL1,DEN1) MESG( Enter the required turbulence model: MESG( CK - Chen-Kim k-e model MESG( KE - Standard k-e model MESG( KL - Kato-Launder k-e model MESG( MMK - Murakami k-e model MESG( RNG - RNG k-e model MESG( RKE - Realisable k-e model (default) MESG( KW - Wilcox 1988 k-w model MESG( KWR - Wilcox 2008 k-w model MESG( KWM - Menter k-w model MESG( KWS - k-w SST model MESG( READVDU(CTURB,CHAR,RKE) CASE :CTURB: OF WHEN CK,2 TEXT(Chen_Kim_KE Blunt Flat Plate:T311 + MESG(Chen-Kim k-e model + TURMOD(KECHEN);TLSC=EP WHEN KE,2 TEXT(Standard_KE Blunt Flat Plate:T311 + MESG(Standard k-e model + TURMOD(KEMODL);TLSC=EP WHEN KL,2 + TEXT(Kato_Launder_KE Blunt Flat Plate:T311 + MESG(Kato-Launder k-e model + TURMOD(KEKL);TLSC=EP WHEN MMK,3 + TEXT(MMK_K-E Blunt Flat Plate:T311 + MESG(MMK k-e model + TURMOD(KEMMK);TLSC=EP WHEN RNG,3 + TEXT(RNG_K-E Blunt Flat Plate:T311 + MESG(RNG k-e model + TURMOD(KERNG);TLSC=EP + STORE(ETA,ALF,GEN1) + OUTPUT(ALF,Y,N,P,Y,Y,Y);OUTPUT(ETA,Y,N,P,Y,Y,Y) ** change from default of 1.0 to secure convergence + SPEDAT(SET,MAXINC,KE,R,0.1) WHEN RKE,3 + TEXT(Realisable_KE Blunt Flat Plate:T311 + MESG(Realisable k-e model + TURMOD(KEREAL);TLSC=EP;STORE(C1E) + OUTPUT(CMU,P,P,P,P,Y,Y);OUTPUT(C1E,P,P,P,P,Y,Y) WHEN KW,2 TEXT(Wilcox 1988 k-w Blunt Flat Plate:T311 + MESG(Wilcox 1988 k-w model (default) + TURMOD(KWMODL);TLSC=OMEG;KWMOD=T + STORE(EP);EPSIN=EPSIN/(0.09*TKEIN) WHEN KWR,3 TEXT(Wilcox 2008 k-w Blunt Flat Plate:T311 + MESG(Wilcox k-w model (default) + TURMOD(KWMODLR);TLSC=OMEG;FIINIT(FBP)=1.0;KWMOD=T + EPSIN=EPSIN/(0.09*TKEIN) WHEN KWM,3 TEXT(Menter k-w Blunt Flat Plate:T311 + MESG(Menter 1992 k-w model: + TURMOD(KWMENTER);TLSC=OMEG;KWMOD=T + STORE(EP);FIINIT(BF1)=1.0 + STORE(BF1,GEN1) ** The following are for printout only + STORE(DKDX,DKDY,DKDZ,DFDX,DFDY,DFDZ,CDWS,SIGK,SIGW) + EPSIN=EPSIN/(0.09*TKEIN) WHEN KWS,3 TEXT(SST k-w Blunt Flat Plate:T311 + MESG(k-w SST model + TURMOD(KWSST);TLSC=OMEG;KWMOD=T + STORE(EP);FIINIT(BF1)=1.0;FIINIT(BF2)=1.0 + STORE(BF1,BF2,GEN1) ** The following are for printout only + STORE(DKDX,DKDY,DKDZ,DFDX,DFDY,DFDZ,CDWS,SIGK,SIGW) + EPSIN=EPSIN/(0.09*TKEIN) ENDCASE STORE(YPLS,STRS,SKIN) GROUP 8. Terms (in differential equations) & devices DENPCO=T ADDDIF=T GROUP 9. Properties of the medium (or media) RHO1=1.225;ENUL=UIN*THICKNESS/REYNO GROUP 11. Initialization of variable or porosity fields FIINIT(U1)=UIN;FIINIT(V1)=0.001*UIN FIINIT(KE)=TKEIN;FIINIT(:TLSC:)=EPSIN ** Initialization of variables in blocked region CONPOR(PLATE,0.0,CELL,-#2,#2,-#1,#1,#1,#1) ** Initialization of variables in blocked region STORE(PRPS) PATCH(PLATE,INIVAL,#2,#2,#1,#1,#1,#1,1,1) INIT(PLATE,PRPS,0.,198) EGWF=T GROUP 13. Boundary conditions and special sources INLET(INLET,WEST,#1,#1,#1,#NREGY,#1,#1,1,1) VALUE(INLET,P1,RHO1*UIN);VALUE(INLET,U1,UIN) VALUE(INLET,KE,TKEIN);VALUE(INLET,:TLSC:,EPSIN) PATCH(OUTLET,EAST,#NREGX,#NREGX,#2,#NREGY,#1,#1,1,1) COVAL(OUTLET,P1,1.0E3,0.0) COVAL(OUTLET,U1,ONLYMS,0.0);COVAL(OUTLET,V1,ONLYMS,0.0) SCALWF=T ! Scalable wall functions GROUP 15. Termination of sweeps LSWEEP=1500 GROUP 16. Termination of iterations SELREF=T;RESFAC=1.E-4 GROUP 17. Under-relaxation devices CONWIZ=T IF(.NOT.KWMOD) THEN +KELIN=3 ENDIF CASE :CTURB: OF WHEN RKE,3 + VARMAX(ENUT)=0.1 WHEN KWR,3 + SCALWF=F WHEN KW,2 + CONWIZ=F;KELIN=0 + REAL(DTF);DTF=0.1*XULAST/UIN + RELAX(V1,FALSDT,DTF);RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF);RELAX(OMEG,FALSDT,DTF) WHEN KWM,3 + CONWIZ=F;KELIN=0 + REAL(DTF);DTF=XULAST/UIN + RELAX(V1,FALSDT,DTF);RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF);RELAX(OMEG,FALSDT,DTF) + RELAX(ENUT,LINRLX,0.5) + RELAX(BF1,LINRLX,0.05) WHEN KWS,3 + CONWIZ=F + REAL(DTF);DTF=XULAST/(UIN*NX) + RELAX(V1,FALSDT,DTF);RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF);RELAX(:TLSC:,FALSDT,DTF) + RELAX(ENUT,LINRLX,0.5) ENDCASE IYMON=NYP+2;IXMON=NXF+13;NPRMON=100 GROUP 23. Field print-out and plot control ITABL=3;NPLT=10;IPLTL=LSWEEP;NXPRIN=23;NYPRIN=15 TSTSWP=-1 SPEDAT(SET,GXMONI,PLOTALL,L,T) DISTIL=T EX(PRPS)=9.362E-01;EX(DEN1)=1.147E+00 CASE :CTURB: OF WHEN CK,2 +EX(P1 )=5.509E+00;EX(U1 )=6.621E+00 +EX(V1 )=4.384E-01;EX(KE )=1.068E-01 +EX(EP )=4.566E+00;EX(EPKE)=6.777E+00 +EX(EL1 )=2.751E-02;EX(STRS)=2.418E-04 +EX(YPLS)=1.484E-01;EX(SKIN)=5.053E-05 +EX(ENUT)=1.388E-03 WHEN KE,2 +EX(P1 )=4.615E+00;EX(U1 )=6.763E+00 +EX(V1 )=3.448E-01;EX(KE )=4.162E-01 +EX(EP )=1.812E+01;EX(EPKE)=4.837E+00 +EX(EL1 )=4.060E-02;EX(STRS)=3.877E-04 +EX(YPLS)=1.835E-01;EX(SKIN)=4.730E-05 +EX(ENUT)=3.523E-03 WHEN MMK,3 +EX(P1 )=5.157E+00;EX(U1 )=6.666E+00 +EX(V1 )=4.003E-01;EX(KE )=1.236E-01 +EX(EP )=5.389E+00;EX(EPKE)=5.019E+00 +EX(DVDX)=3.924E+00;EX(DUDY)=1.759E+01 +EX(FOMG)=2.061E-01;EX(EL1 )=4.050E-02 +EX(STRS)=2.645E-04;EX(YPLS)=1.536E-01 +EX(SKIN)=5.030E-05;EX(ENUT)=5.105E-04 WHEN RNG,3 +EX(P1 )=5.344E+00;EX(U1 )=6.643E+00 +EX(V1 )=4.205E-01;EX(KE )=1.291E-01 +EX(EP )=5.132E+00;EX(EPKE)=5.857E+00 +EX(GEN1)=5.710E+03;EX(ALF )=8.198E+00 +EX(ETA )=8.497E+00;EX(EL1 )=3.148E-02 +EX(STRS)=2.585E-04;EX(YPLS)=1.527E-01 +EX(SKIN)=5.016E-05;EX(ENUT)=1.707E-03 WHEN RKE,3 +EX(P1 )=5.421E+00;EX(U1 )=6.629E+00 +EX(V1 )=4.262E-01;EX(KE )=1.230E-01 +EX(EP )=4.972E+00;EX(SKIN)=5.051E-05 +EX(STRS)=2.497E-04;EX(YPLS)=1.502E-01 +EX(C1E )=5.868E-01;EX(DVDY)=5.134E+00 +EX(DVDX)=3.958E+00;EX(DUDY)=1.836E+01 +EX(DUDX)=5.133E+00;EX(EPKE)=5.302E+00 +EX(CMU )=7.094E-02;EX(DEN1)=1.147E+00 +EX(EL1 )=4.079E-02;EX(ENUT)=1.602E-03 WHEN KL,2 +EX(P1 )=5.146E+00;EX(U1 )=6.667E+00 +EX(V1 )=3.990E-01;EX(KE )=1.247E-01 +EX(EP )=5.601E+00;EX(EPKE)=5.071E+00 +EX(DVDX)=3.928E+00;EX(DUDY)=1.757E+01 +EX(FOMG)=2.223E-01;EX(EL1 )=4.046E-02 +EX(STRS)=2.654E-04;EX(YPLS)=1.539E-01 +EX(SKIN)=5.027E-05;EX(ENUT)=1.935E-03 WHEN KW,2 +EX(U1 )=6.655E+00;EX(DEN1)=1.147E+00 +EX(P1 )=5.427E+00;EX(V1 )=3.554E-01 +EX(KE )=2.318E+00;EX(EP )=4.445E+01 +EX(SKIN)=4.484E-05;EX(STRS)=5.342E-04 +EX(YPLS)=2.129E-01;EX(OMEG)=4.823E+01 +EX(EL1 )=6.173E-02;EX(ENUT)=3.347E-02 WHEN KWR,3 +EX(P1 )=5.199E+00;EX(U1 )=6.661E+00 +EX(V1 )=4.027E-01;EX(KE )=1.410E-01 +EX(EP )=6.496E+00 +EX(SKIN)=7.760E-05;EX(STRS)=2.706E-04 +EX(YPLS)=1.483E-01;EX(DVDY)=4.987E+00 +EX(DVDX)=3.942E+00;EX(DUDY)=1.858E+01 +EX(DUDX)=5.031E+00;EX(GEN1)=7.505E+03 +EX(FBP )=9.336E-01;EX(XWP )=2.446E-01 +EX(OMEG)=4.410E+01;EX(EL1 )=4.161E-02 +EX(ENUT)=1.218E-03 WHEN KWM,3 +EX(P1 )=4.631E+00;EX(U1 )=6.763E+00 +EX(V1 )=3.445E-01;EX(KE )=4.589E-01 +EX(SKIN)=4.703E-05;EX(STRS)=3.972E-04 +EX(YPLS)=1.858E-01;EX(SIGW)=1.277E+00 +EX(SIGK)=1.157E+00;EX(DFDX)=7.892E+02 +EX(GEN1)=5.972E+03;EX(LTLS)=4.368E-01 +EX(WDIS)=4.522E-01;EX(BF1 )=2.203E-01 +EX(OMEG)=5.394E+01;EX(EL1 )=4.063E-02 +EX(ENUT)=3.595E-03;EX(EP )=2.097E+01 +EX(CDWS)=4.416E+05;EX(DFDY)=3.106E+03 +EX(DKDY)=2.936E+01;EX(DKDX)=1.082E+01 WHEN KWS,3 +EX(P1 )=5.572E+00;EX(V1 )=4.397E-01 +EX(KE )=1.194E-01;EX(EP )=4.939E+00 +EX(STRS)=2.593E-04;EX(SIGW)=1.244E+00 +EX(SIGK)=1.117E+00; +EX(DFDX)=7.986E+02;EX(GEN1)=8.297E+03 +EX(BF2 )=6.768E-01;EX(BF1 )=1.807E-01 +EX(OMEG)=5.316E+01;EX(EL1 )=3.382E-02 +EX(ENUT)=1.128E-03;EX(WDIS)=4.522E-01 +EX(U1 )=6.615E+00;EX(SKIN)=5.013E-05 +EX(YPLS)=1.531E-01;EX(LTLS)=4.368E-01 +EX(CDWS)=1.138E+04;EX(DFDY)=2.665E+03 +EX(DKDY)=7.237E+00;EX(DKDX)=6.701E-01 ENDCASE LIBREF = 311 idispa=50 csg1=sw STOP