TALK=T;RUN( 1, 1)
** LOAD(x311) from the x Input Library
GROUP 1. Run title and other preliminaries
TEXT(REALISABLE_KE SCAL_WF BLUNT PLATE:T311
TITLE
DISPLAY
The case considered is 2D incompressible, turbulent flow
past a thick flat rectangular plate with a sharp leading
edge, as studied experimentally by Djilali,N. & Gartshore,I.S.,
"Turbulent flow around a bluff rectangular plate, Part I:
Experimental Investigation", Journal of Fluid Mechanics,
Vol.113, pp51-59, (1991).
The flow separates at the leading edge of the plate, and then
reattaches further downstream to form a long separation zone on
top of the plate. The thickness of the plate H is taken as 0.1m,
and the working fluid is air at standard temperature and
pressure.The flow Reynolds number based on the free-stream
velocity and plate thickness H is 50,000.
The inlet and outlet planes are located 10H upstream and
downstream of the leading edge of the plate. The height of the
solution domain is taken as 10H, and for simplicity a zero
flux boundary is assumed here. Symmetry is exploited so that
only one half of the flow is simulated. A fixed-pressure boundary
condition is applied at the outlet, and uniform flow profiles are
specified at the inlet. Scalable wall functions are used at
the walls of the plate.
The default simulation is made with the realisable k-e model, but
the case can also be run with the standard k-e and k-w models, the
revised Wilcox k-w, Menter k-w and k-w-SST model, and the following
k-e variants: Chen-Kim, RNG, Kato-Launder, Murakami et al. The
measured and predicted reattachment points are listed below:
KE RKE CK RNG MMK KL KW KWR KWM SST EXPT
Xr/H= 1.1 4.8 4.7 3.9 3.2 3.2 0.73 3.7 0.94 5.1 4.7
These results are not grid independent. It can be seen that the
standard k-e and k-w models seriously underestimate the separation
length. This is because this model predicts excessive turbulence
production at the stagnation zone on the front of the plate, and
the high turbulence levels are then convected into the separation
zone. The other models perform much better, with the revised
Wilcox, Chen-Kim and Realisable models showing close agreement
with the measurement.
ENDDIS
This AUTOPLOT sequence provides a plot of the axial velocity U1
along the top of the plate against axial distance normalised by
the step height. The axial coordinate 0.0 corresponds to the
front of the step. The reattachment point corresponds the axial
location where U1 changes from negative to positive.
AUTOPLOT USE
file
phida 3
da 1 u1 y 11
divide x .1 1
shift x -10 1
colf 1
level y 0;level x 0
scale x 0 6
redraw
msg Velocity (U1) profile
msg Press e to END
ENDUSE
CHAR(CTURB,TLSC)
BOOLEAN(KWMOD);KWMOD=F
REAL(THICKNESS,DHEIGHT,DLEN,PLEN,PHEIGHT,REYNO,UIN)
REAL(TKEIN,EPSIN,MIXL,FRIC)
INTEGER(NYP,NYF,NXF,NXP)
** Calculation of domain specifications
THICKNESS=0.1;PHEIGHT=0.5*THICKNESS
DHEIGHT=10.*THICKNESS;PLEN=10.*THICKNESS;DLEN=20.*THICKNESS
REYNO=5.0E4;UIN=7.3
TKEIN=(0.01*UIN)**2;MIXL=0.05*DHEIGHT
EPSIN=0.1643*TKEIN**1.5/MIXL
GROUP 3. X-direction grid specification
GROUP 4. Y-direction grid specification
NXF=60;NXP=55;NYP=10;NYF=65
NREGX=2
IREGX=1;GRDPWR(X,NXF,-(DLEN-PLEN),-1.04)
IREGX=2;GRDPWR(X,NXP,-PLEN,1.04)
NREGY=2
IREGY=1;GRDPWR(Y,NYP,-PHEIGHT,1.04)
IREGY=2;GRDPWR(Y,NYF,-(DHEIGHT-PHEIGHT),1.04)
GROUP 7. Variables stored, solved & named
SOLVE(P1,U1,V1);STORE(ENUT,EL1,DEN1)
MESG( Enter the required turbulence model:
MESG( CK - Chen-Kim k-e model
MESG( KE - Standard k-e model
MESG( KL - Kato-Launder k-e model
MESG( MMK - Murakami k-e model
MESG( RNG - RNG k-e model
MESG( RKE - Realisable k-e model (default)
MESG( KW - Wilcox 1988 k-w model
MESG( KWR - Wilcox 2008 k-w model
MESG( KWM - Menter k-w model
MESG( KWS - k-w SST model
MESG(
READVDU(CTURB,CHAR,RKE)
CASE :CTURB: OF
WHEN CK,2
TEXT(Chen_Kim_KE Blunt Flat Plate:T311
+ MESG(Chen-Kim k-e model
+ TURMOD(KECHEN);TLSC=EP
WHEN KE,2
TEXT(Standard_KE Blunt Flat Plate:T311
+ MESG(Standard k-e model
+ TURMOD(KEMODL);TLSC=EP
WHEN KL,2
+ TEXT(Kato_Launder_KE Blunt Flat Plate:T311
+ MESG(Kato-Launder k-e model
+ TURMOD(KEKL);TLSC=EP
WHEN MMK,3
+ TEXT(MMK_K-E Blunt Flat Plate:T311
+ MESG(MMK k-e model
+ TURMOD(KEMMK);TLSC=EP
WHEN RNG,3
+ TEXT(RNG_K-E Blunt Flat Plate:T311
+ MESG(RNG k-e model
+ TURMOD(KERNG);TLSC=EP
+ STORE(ETA,ALF,GEN1)
+ OUTPUT(ALF,Y,N,P,Y,Y,Y);OUTPUT(ETA,Y,N,P,Y,Y,Y)
** change from default of 1.0 to secure convergence
+ SPEDAT(SET,MAXINC,KE,R,0.1)
WHEN RKE,3
+ TEXT(Realisable_KE Blunt Flat Plate:T311
+ MESG(Realisable k-e model
+ TURMOD(KEREAL);TLSC=EP;STORE(C1E)
+ OUTPUT(CMU,P,P,P,P,Y,Y);OUTPUT(C1E,P,P,P,P,Y,Y)
WHEN KW,2
TEXT(Wilcox 1988 k-w Blunt Flat Plate:T311
+ MESG(Wilcox 1988 k-w model (default)
+ TURMOD(KWMODL);TLSC=OMEG;KWMOD=T
+ STORE(EP);EPSIN=EPSIN/(0.09*TKEIN)
WHEN KWR,3
TEXT(Wilcox 2008 k-w Blunt Flat Plate:T311
+ MESG(Wilcox k-w model (default)
+ TURMOD(KWMODLR);TLSC=OMEG;FIINIT(FBP)=1.0;KWMOD=T
+ EPSIN=EPSIN/(0.09*TKEIN)
WHEN KWM,3
TEXT(Menter k-w Blunt Flat Plate:T311
+ MESG(Menter 1992 k-w model:
+ TURMOD(KWMENTER);TLSC=OMEG;KWMOD=T
+ STORE(EP);FIINIT(BF1)=1.0
+ STORE(BF1,GEN1)
** The following are for printout only
+ STORE(DKDX,DKDY,DKDZ,DFDX,DFDY,DFDZ,CDWS,SIGK,SIGW)
+ EPSIN=EPSIN/(0.09*TKEIN)
WHEN KWS,3
TEXT(SST k-w Blunt Flat Plate:T311
+ MESG(k-w SST model
+ TURMOD(KWSST);TLSC=OMEG;KWMOD=T
+ STORE(EP);FIINIT(BF1)=1.0;FIINIT(BF2)=1.0
+ STORE(BF1,BF2,GEN1)
** The following are for printout only
+ STORE(DKDX,DKDY,DKDZ,DFDX,DFDY,DFDZ,CDWS,SIGK,SIGW)
+ EPSIN=EPSIN/(0.09*TKEIN)
ENDCASE
STORE(YPLS,STRS,SKIN)
GROUP 8. Terms (in differential equations) & devices
DENPCO=T
ADDDIF=T
GROUP 9. Properties of the medium (or media)
RHO1=1.225;ENUL=UIN*THICKNESS/REYNO
GROUP 11. Initialization of variable or porosity fields
FIINIT(U1)=UIN;FIINIT(V1)=0.001*UIN
FIINIT(KE)=TKEIN;FIINIT(:TLSC:)=EPSIN
** Initialization of variables in blocked region
CONPOR(PLATE,0.0,CELL,-#2,#2,-#1,#1,#1,#1)
** Initialization of variables in blocked region
STORE(PRPS)
PATCH(PLATE,INIVAL,#2,#2,#1,#1,#1,#1,1,1)
INIT(PLATE,PRPS,0.,198)
EGWF=T
GROUP 13. Boundary conditions and special sources
INLET(INLET,WEST,#1,#1,#1,#NREGY,#1,#1,1,1)
VALUE(INLET,P1,RHO1*UIN);VALUE(INLET,U1,UIN)
VALUE(INLET,KE,TKEIN);VALUE(INLET,:TLSC:,EPSIN)
PATCH(OUTLET,EAST,#NREGX,#NREGX,#2,#NREGY,#1,#1,1,1)
COVAL(OUTLET,P1,1.0E3,0.0)
COVAL(OUTLET,U1,ONLYMS,0.0);COVAL(OUTLET,V1,ONLYMS,0.0)
SCALWF=T ! Scalable wall functions
GROUP 15. Termination of sweeps
LSWEEP=1500
GROUP 16. Termination of iterations
SELREF=T;RESFAC=1.E-4
GROUP 17. Under-relaxation devices
CONWIZ=T
IF(.NOT.KWMOD) THEN
+KELIN=3
ENDIF
CASE :CTURB: OF
WHEN RKE,3
+ VARMAX(ENUT)=0.1
WHEN KWR,3
+ SCALWF=F
WHEN KW,2
+ CONWIZ=F;KELIN=0
+ REAL(DTF);DTF=0.1*XULAST/UIN
+ RELAX(V1,FALSDT,DTF);RELAX(U1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF);RELAX(OMEG,FALSDT,DTF)
WHEN KWM,3
+ CONWIZ=F;KELIN=0
+ REAL(DTF);DTF=XULAST/UIN
+ RELAX(V1,FALSDT,DTF);RELAX(U1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF);RELAX(OMEG,FALSDT,DTF)
+ RELAX(ENUT,LINRLX,0.5)
+ RELAX(BF1,LINRLX,0.05)
WHEN KWS,3
+ CONWIZ=F
+ REAL(DTF);DTF=XULAST/(UIN*NX)
+ RELAX(V1,FALSDT,DTF);RELAX(U1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF);RELAX(:TLSC:,FALSDT,DTF)
+ RELAX(ENUT,LINRLX,0.5)
ENDCASE
IYMON=NYP+2;IXMON=NXF+13;NPRMON=100
GROUP 23. Field print-out and plot control
ITABL=3;NPLT=10;IPLTL=LSWEEP;NXPRIN=23;NYPRIN=15
TSTSWP=-1
SPEDAT(SET,GXMONI,PLOTALL,L,T)
DISTIL=T
EX(PRPS)=9.362E-01;EX(DEN1)=1.147E+00
CASE :CTURB: OF
WHEN CK,2
+EX(P1 )=5.509E+00;EX(U1 )=6.621E+00
+EX(V1 )=4.384E-01;EX(KE )=1.068E-01
+EX(EP )=4.566E+00;EX(EPKE)=6.777E+00
+EX(EL1 )=2.751E-02;EX(STRS)=2.418E-04
+EX(YPLS)=1.484E-01;EX(SKIN)=5.053E-05
+EX(ENUT)=1.388E-03
WHEN KE,2
+EX(P1 )=4.615E+00;EX(U1 )=6.763E+00
+EX(V1 )=3.448E-01;EX(KE )=4.162E-01
+EX(EP )=1.812E+01;EX(EPKE)=4.837E+00
+EX(EL1 )=4.060E-02;EX(STRS)=3.877E-04
+EX(YPLS)=1.835E-01;EX(SKIN)=4.730E-05
+EX(ENUT)=3.523E-03
WHEN MMK,3
+EX(P1 )=5.157E+00;EX(U1 )=6.666E+00
+EX(V1 )=4.003E-01;EX(KE )=1.236E-01
+EX(EP )=5.389E+00;EX(EPKE)=5.019E+00
+EX(DVDX)=3.924E+00;EX(DUDY)=1.759E+01
+EX(FOMG)=2.061E-01;EX(EL1 )=4.050E-02
+EX(STRS)=2.645E-04;EX(YPLS)=1.536E-01
+EX(SKIN)=5.030E-05;EX(ENUT)=5.105E-04
WHEN RNG,3
+EX(P1 )=5.344E+00;EX(U1 )=6.643E+00
+EX(V1 )=4.205E-01;EX(KE )=1.291E-01
+EX(EP )=5.132E+00;EX(EPKE)=5.857E+00
+EX(GEN1)=5.710E+03;EX(ALF )=8.198E+00
+EX(ETA )=8.497E+00;EX(EL1 )=3.148E-02
+EX(STRS)=2.585E-04;EX(YPLS)=1.527E-01
+EX(SKIN)=5.016E-05;EX(ENUT)=1.707E-03
WHEN RKE,3
+EX(P1 )=5.421E+00;EX(U1 )=6.629E+00
+EX(V1 )=4.262E-01;EX(KE )=1.230E-01
+EX(EP )=4.972E+00;EX(SKIN)=5.051E-05
+EX(STRS)=2.497E-04;EX(YPLS)=1.502E-01
+EX(C1E )=5.868E-01;EX(DVDY)=5.134E+00
+EX(DVDX)=3.958E+00;EX(DUDY)=1.836E+01
+EX(DUDX)=5.133E+00;EX(EPKE)=5.302E+00
+EX(CMU )=7.094E-02;EX(DEN1)=1.147E+00
+EX(EL1 )=4.079E-02;EX(ENUT)=1.602E-03
WHEN KL,2
+EX(P1 )=5.146E+00;EX(U1 )=6.667E+00
+EX(V1 )=3.990E-01;EX(KE )=1.247E-01
+EX(EP )=5.601E+00;EX(EPKE)=5.071E+00
+EX(DVDX)=3.928E+00;EX(DUDY)=1.757E+01
+EX(FOMG)=2.223E-01;EX(EL1 )=4.046E-02
+EX(STRS)=2.654E-04;EX(YPLS)=1.539E-01
+EX(SKIN)=5.027E-05;EX(ENUT)=1.935E-03
WHEN KW,2
+EX(U1 )=6.655E+00;EX(DEN1)=1.147E+00
+EX(P1 )=5.427E+00;EX(V1 )=3.554E-01
+EX(KE )=2.318E+00;EX(EP )=4.445E+01
+EX(SKIN)=4.484E-05;EX(STRS)=5.342E-04
+EX(YPLS)=2.129E-01;EX(OMEG)=4.823E+01
+EX(EL1 )=6.173E-02;EX(ENUT)=3.347E-02
WHEN KWR,3
+EX(P1 )=5.199E+00;EX(U1 )=6.661E+00
+EX(V1 )=4.027E-01;EX(KE )=1.410E-01
+EX(EP )=6.496E+00
+EX(SKIN)=7.760E-05;EX(STRS)=2.706E-04
+EX(YPLS)=1.483E-01;EX(DVDY)=4.987E+00
+EX(DVDX)=3.942E+00;EX(DUDY)=1.858E+01
+EX(DUDX)=5.031E+00;EX(GEN1)=7.505E+03
+EX(FBP )=9.336E-01;EX(XWP )=2.446E-01
+EX(OMEG)=4.410E+01;EX(EL1 )=4.161E-02
+EX(ENUT)=1.218E-03
WHEN KWM,3
+EX(P1 )=4.631E+00;EX(U1 )=6.763E+00
+EX(V1 )=3.445E-01;EX(KE )=4.589E-01
+EX(SKIN)=4.703E-05;EX(STRS)=3.972E-04
+EX(YPLS)=1.858E-01;EX(SIGW)=1.277E+00
+EX(SIGK)=1.157E+00;EX(DFDX)=7.892E+02
+EX(GEN1)=5.972E+03;EX(LTLS)=4.368E-01
+EX(WDIS)=4.522E-01;EX(BF1 )=2.203E-01
+EX(OMEG)=5.394E+01;EX(EL1 )=4.063E-02
+EX(ENUT)=3.595E-03;EX(EP )=2.097E+01
+EX(CDWS)=4.416E+05;EX(DFDY)=3.106E+03
+EX(DKDY)=2.936E+01;EX(DKDX)=1.082E+01
WHEN KWS,3
+EX(P1 )=5.572E+00;EX(V1 )=4.397E-01
+EX(KE )=1.194E-01;EX(EP )=4.939E+00
+EX(STRS)=2.593E-04;EX(SIGW)=1.244E+00
+EX(SIGK)=1.117E+00;
+EX(DFDX)=7.986E+02;EX(GEN1)=8.297E+03
+EX(BF2 )=6.768E-01;EX(BF1 )=1.807E-01
+EX(OMEG)=5.316E+01;EX(EL1 )=3.382E-02
+EX(ENUT)=1.128E-03;EX(WDIS)=4.522E-01
+EX(U1 )=6.615E+00;EX(SKIN)=5.013E-05
+EX(YPLS)=1.531E-01;EX(LTLS)=4.368E-01
+EX(CDWS)=1.138E+04;EX(DFDY)=2.665E+03
+EX(DKDY)=7.237E+00;EX(DKDX)=6.701E-01
ENDCASE
LIBREF = 311
idispa=50
csg1=sw
STOP