TALK=T;RUN( 1, 1) ** LOAD(x310) from the x Input Library TEXT(Realisable KE_2D Elliptic Plane Free Jet: T310 TITLE DISPLAY The problem considered is the submerged free turbulent plane jet in stagnant surroundings. The jet issues from a slot H at a Reynolds number of 14,000. The calculation exploits symmetry, and is carried out with the elliptic solver for a domain which is 30H long by 7.5H wide. Calculations are performed with the standard k-e & the Chen-Kim, RNG and Realisable k-e variants. Simulations are also made with the 1988 & 2008 Wilcox k-w models, the Menter k-w model and the k-w SST variant. The experimental data indicate a velocity half- width spreading rate of 0.11 in the self-similar region of the jet. The present calculations predict the following half-width spreading rates: data KE CK RNG RKE KW KWR KWM SST dy/dz 0.11 0.099 0.076 0.119 0.099 0.115 0.106 0.106 0.102 The Realisable, RNG & standard k-e models produce fairly good agreement with the data, and likewise with the Wilcox 2008, Menter and k-w-SST models. However, the Chen-Kim k-e model significantly underestimates the jet spreading, and the Wilcox 1988 k-w model with the default model constants produces an excessive spreading rate. The value reported above for the Wilcox 1988 model was obtained with a 30% reduction in the value of C2w in the w-equation. It should be mentioned that the results reported here have not been subjected to a grid-sensitivity test. The half-width spreading rate is calculated approximately using In-Form commands and then written to the text-output file named inforout. ENDDIS GROUP 1. Run title and other preliminaries REAL(WINJ,WIN_FS,KE_FS,EP_FS,KEINJ,EPINJ,HSLOT,PRADO,PRADI,CD) REAL(OM_FS,OMINJ,LAMVIS,ENUT_FS,TINJ,TIN_FS,REYNO) BOOLEAN(KWMOD);KWMOD=F REYNO=1.4E4 HSLOT=0.025;PRADI=0.5*HSLOT;PRADO=15.*PRADI CD=0.1643 ** jet-inflow conditions WINJ=10.;TINJ=0.05 KEINJ=(TINJ*WINJ)**2; EPINJ=CD*KEINJ**1.5/(0.1*PRADI) ** laminar kinematic viscosity LAMVIS=WINJ*2.*HSLOT/REYNO LAMVIS ** free-stream conditions WIN_FS=WINJ/1000.;TIN_FS=0.05 ENUT_FS=LAMVIS KE_FS=(TIN_FS*WIN_FS)**2;EP_FS=0.09*KE_FS**2/ENUT_FS GROUP 3. X-direction grid specification GROUP 4. Y-direction grid specification INTEGER(NYF,NYO,NYG) NYF=10;NYO=50;NYG=NYF+NYO NREGY=2;NY=46 IREGY=1;GRDPWR(Y,NYF,PRADI,1.0) IREGY=2;GRDPWR(Y,NYO,-(PRADO-PRADI),1.04) GROUP 5. Z-direction grid specification NZ=120;GRDPWR(Z,NZ,-(30.*HSLOT),1.01) GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1);STORE(ENUT) SOLUTN(P1,P,P,Y,P,P,P);SOLUTN(V1,P,P,P,P,P,N) SOLUTN(W1,P,P,P,P,P,N) CHAR(CTURB) MESG( Enter the required turbulence model: MESG( KE - Standard k-e model MESG( CK - Chen Kim k-e model MESG( RNG - RNG k-e model MESG( RKE - Realisable k-e model (default) MESG( KW - Wilcox 1988 k-w model MESG( KWR - Wilcox 2008 k-w model MESG( KWM - Menter 1992 k-w model MESG( KWS - k-w SST model MESG( READVDU(CTURB,CHAR,RKE) CASE :CTURB: OF WHEN KE,2 + TEXT(Standard KE_2D Elliptic Plane Jet + MESG(Standard k-e model + TURMOD(KEMODL) WHEN CK,2 + TEXT(Chen-Kim KE_2D Elliptic Plane Jet + MESG(Chen Kim k-e model + TURMOD(KECHEN) WHEN RNG,3 + TEXT(RNG KE_2D Elliptic Plane Jet + MESG(RNG k-e model + TURMOD(KERNG) WHEN RKE,3 + TEXT(Realisable KE_2D Elliptic Plane Jet + MESG(RK k-e model + TURMOD(KEREAL) + STORE(CMU,C1E) + OUTPUT(CMU,P,P,P,P,Y,Y);OUTPUT(C1E,P,P,P,P,Y,Y) WHEN KW,2 + TEXT(Wilcox 1988 k-w 2D Elliptic Plane Jet + MESG(Wilcox 1988 k-w Model + TURMOD(KWMODL);KWMOD=T + OMINJ=EPINJ/(0.09*KEINJ) + ENUT_FS=0.001*LAMVIS + EP_FS=0.09*KE_FS**2/ENUT_FS + OM_FS=EP_FS/(0.09*KE_FS) ** lower C2f from 0.075 to match measured spreading rate + SPEDAT(KECONST,C2E,R,0.7*0.075) WHEN KWR,3 + TEXT(Wilcox 2008 k-w 2D Elliptic Plane Jet + MESG(Wilcox 2008 k-w Model + TURMOD(KWMODLR);KWMOD=T;FIINIT(FBP)=1.0 + OMINJ=EPINJ/(0.09*KEINJ) + OM_FS=EP_FS/(0.09*KE_FS) + STORE(CDWS) ** deactivate vortex stretching term, as this is zero in 2d incompressible planar flow + SPEDAT(KWMOD,VORTSP,L,F) WHEN KWM,3 TEXT(Menter k-w 2D Elliptic Plane Jet + MESG(Menter 1992 k-w model + TURMOD(KWMENTER);KWMOD=T + STORE(EP);OMINJ=EPINJ/(0.09*KEINJ) + OM_FS=EP_FS/(0.09*KE_FS) + STORE(BF1,CDWS,SIGK,SIGW) WHEN KWS,3 TEXT(SST k-w 2D Elliptic Plane Jet + MESG(Menter 1992 k-w SST model + TURMOD(KWSST);KWMOD=T + STORE(EP);OMINJ=EPINJ/(0.09*KEINJ) + OM_FS=EP_FS/(0.09*KE_FS) + STORE(BF1,BF2,GEN1,CDWS,SIGK,SIGW) ENDCASE STORE(LEN1) GROUP 8. Terms (in differential equations) & devices GROUP 9. Properties of the medium (or media) ENUL=LAMVIS GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=WIN_FS PATCH(INIT,INIVAL,1,NX,1,NYF,1,NZ,1,LSTEP) INIT(INIT,W1,0.0,WINJ); FIINIT(KE)=KEINJ; FIINIT(EP)=EPINJ GROUP 13. Boundary conditions and special sources ** Jet Inlet Conditions INLET(IN1,LOW,1,NX,1,NYF,1,1,1,LSTEP) VALUE(IN1,P1,RHO1*WINJ); VALUE(IN1,W1,WINJ) VALUE(IN1,KE,KEINJ);VALUE(IN1,EP,EPINJ) IF(KWMOD) THEN +VALUE(IN1,OMEG,OMINJ);FIINIT(OMEG)=OMINJ ENDIF ** Free Boundary Conditions INLET(IN2,LOW,1,NX,#2,#2,1,1,1,LSTEP) VALUE(IN2,P1,RHO1*WIN_FS);VALUE(IN2,W1,WIN_FS) VALUE(IN2,KE,KE_FS);VALUE(IN2,EP,EP_FS) IF(KWMOD) THEN +VALUE(IN2,OMEG,OM_FS) ENDIF PATCH(FREEB,NORTH,1,NX,NYG,NYG,1,NZ,1,LSTEP) COVAL(FREEB,W1,ONLYMS,WIN_FS) COVAL(FREEB,KE,ONLYMS,KE_FS);COVAL(FREEB,EP,ONLYMS,EP_FS) COVAL(FREEB,P1,1.E4,0.0) IF(KWMOD) THEN +VALUE(FREEB,OMEG,OM_FS) ENDIF OUTLET(OUT,HIGH,1,NX,1,NYG,NZ,NZ,1,LSTEP) COVAL(OUT,P1,1.E4,0.0) VALUE(OUT,V1,0.0); VALUE(OUT,W1,0.0) VALUE(OUT,KE,0.0);VALUE(OUT,EP,0.0) IF(KWMOD) THEN +VALUE(OUT,OMEG,OM_FS) ENDIF GROUP 15. Termination of sweeps LSWEEP=1000 GROUP 16. Termination of iterations GROUP 17. Under-relaxation devices IF(.NOT.KWMOD) THEN + KELIN=3 ENDIF REAL(RLXFAC); RLXFAC=8.*ZWLAST/WINJ/NZ RELAX(V1,FALSDT,RLXFAC); RELAX(W1,FALSDT,RLXFAC) RELAX(KE,LINRLX,0.4); RELAX(EP,LINRLX,0.4) CASE :CTURB: OF WHEN RKE,3 + RELAX(KE,FALSDT,RLXFAC); RELAX(EP,FALSDT,RLXFAC) + RELAX(ENUT,LINRLX,0.2);VARMAX(ENUT)=0.1 WHEN KW,2 +RLXFAC=ZWLAST/WINJ/NZ +RELAX(V1,FALSDT,4.*RLXFAC);RELAX(W1,FALSDT,4.*RLXFAC) +RELAX(EP,LINRLX,1.0);RELAX(ENUT,LINRLX,0.25) +RELAX(KE,FALSDT,4.*RLXFAC);RELAX(OMEG,FALSDT,4.*RLXFAC) +VARMAX(ENUT)=0.2 +LSWEEP=1800 +OUTPUT(EP,P,P,P,P,Y,Y) WHEN KWR,3 +RLXFAC=ZWLAST/WINJ/NZ +RELAX(V1,FALSDT,4.*RLXFAC);RELAX(W1,FALSDT,4.*RLXFAC) +RELAX(EP,LINRLX,1.0);RELAX(ENUT,LINRLX,0.25) +RELAX(KE,FALSDT,4.*RLXFAC);RELAX(OMEG,FALSDT,4.*RLXFAC) +RELAX(FBP,LINRLX,1.E-10) +LSWEEP=1800 WHEN KWM,3 +RLXFAC=ZWLAST/WINJ/NZ +RELAX(V1,FALSDT,RLXFAC);RELAX(W1,FALSDT,RLXFAC) +RELAX(EP,LINRLX,1.0);RELAX(ENUT,LINRLX,1.0) +RELAX(KE,FALSDT,RLXFAC);RELAX(OMEG,FALSDT,RLXFAC) +LSWEEP=2500 +OUTPUT(EP,P,P,P,P,Y,Y) WHEN KWS,3 +RLXFAC=ZWLAST/WINJ/NZ +RELAX(V1,FALSDT,4.*RLXFAC);RELAX(W1,FALSDT,4.*RLXFAC) +RELAX(EP,LINRLX,1.0);RELAX(ENUT,LINRLX,1.0) +RELAX(KE,FALSDT,0.5*RLXFAC);RELAX(OMEG,FALSDT,0.5*RLXFAC) +LSWEEP=2500 +OUTPUT(EP,P,P,P,P,Y,Y) ENDCASE GROUP 18. Limits on variables or increments to them RESFAC=1.E-4 GROUP 20. Preliminary print-out ECHO=T GROUP 21. Print-out of variables NYPRIN=1 GROUP 22. Spot-value print-out TSTSWP=-1 IYMON=NYF+2;IZMON=NZ-1;NPLT=10;ITABL=3;NZPRIN=1 GROUP 23. Field print-out and plot control SPEDAT(SET,GXMONI,PLOTALL,L,T) GROUP 24. Dumps for restarts ** compute jet half-width at each axial station -------------------------------------------- (stored of WH is 0.5*W1[&1&] ) (stored of YGP is YG) PATCH(HWIDTH,CELL,1,NX,1,NY,1,NZ-1,1,LSTEP) (stored of YH is 0.0) (stored of YH at HWIDTH is YGP with IF(W1.GE.WH.AND.W1[,+1,].LE.WH)) ** compute jet half-width spreading rate by sampling two axial stations -------------------------------------------------------------------- ** first axial station INTEGER(IZ1);IZ1=3*NZ/4 PATCH(HWIDTH1,CELL,1,NX,2,NY-1,IZ1,IZ1,1,LSTEP) (make1 YH1) (store1 of YH1 at HWIDTH1 is MAX(YH,1.1E-10)) (print YH1 is YH1) ** second axial station PATCH(HWIDTH2,CELL,1,NX,2,NY-1,NZ-1,NZ-1,1,LSTEP) (make1 YH2) (store1 of YH2 at HWIDTH2 is MAX(YH,1.1E-10)) (print YH2 is YH2) ** jet half-width spreading rate (make1 DYHDZ) (stored of ZGM is ZG) (store1 of DYHDZ is (YH2-YH1)/(ZGM[,1,NZ-1]-ZGM[,1,:IZ1:])) (print DYHDZ IS DYHDZ) ** compute jet half width & store at jet axis for axial profile plot in .csv file named IY1.CSV (make1 YH0D is 0) (store1 of YH0D at HWIDTH is YGP with IF(W1.GE.WH.AND.W1[,+1,].LE.WH)) (stored of YH3D is YH0D) PATCH(IY1,PROFIL,1,1,1,1,1,NZ-1,1,1) PLOT(IY1,W1,0.0,0.0);PLOT(IY1,KE,0.0,0.0);PLOT(IY1,YH3D,0.0,0.0) DISTIL=T CASE :CTURB: OF WHEN KE,2 +EX(P1 )=7.548E-02;EX(V1 )=1.934E-01 +EX(W1 )=2.513E+00;EX(KE )=1.000E+00 +EX(EP )=5.415E+01;EX(YH3D)=2.818E-02 +EX(ZGM )=3.021E-01;EX(YH )=4.607E-04 +EX(YGP )=6.195E-02;EX(WH )=4.097E+00 +EX(EPKE)=2.713E+01;EX(LEN1)=4.238E-02 +EX(ENUT)=3.215E-03 WHEN CK,2 +EX(P1 )=5.890E-02;EX(V1 )=1.634E-01 +EX(W1 )=2.472E+00;EX(KE )=7.798E-01 +EX(EP )=4.749E+01;EX(ZGM )=3.021E-01 +EX(YH )=3.794E-04;EX(YGP )=6.195E-02 +EX(WH )=4.311E+00;EX(EPKE)=3.009E+01 +EX(LEN1)=1.164E-02;EX(ENUT)=2.379E-03 +EX(P1 )=5.636E-02;EX(V1 )=1.706E-01 +EX(YH3D)=2.318E-02 WHEN RNG,3 +EX(W1 )=2.504E+00;EX(KE )=9.638E-01 +EX(EP )=4.911E+01;EX(ZGM )=3.021E-01 +EX(YH )=4.484E-04;EX(YGP )=6.195E-02 +EX(WH )=4.151E+00;EX(EPKE)=2.829E+01 +EX(LEN1)=4.415E-02;EX(ENUT)=3.016E-03 +EX(P1 )=7.015E-02;EX(V1 )=1.882E-01 +EX(YH3D)=2.740E-02 WHEN RKE,3 +EX(P1 )=8.042E-02;EX(V1 )=1.931E-01 +EX(W1 )=2.548E+00;EX(KE )=1.038E+00 +EX(EP )=5.927E+01;EX(ZGM )=3.021E-01 +EX(YH )=4.690E-04;EX(YGP )=6.195E-02 +EX(WH )=4.051E+00;EX(LEN1)=4.810E-02 +EX(C1E )=6.296E-01;EX(DWDZ)=5.430E+00 +EX(DWDY)=8.830E+01;EX(DVDZ)=1.440E+00 +EX(DVDY)=5.612E+00;EX(EPKE)=2.701E+01 +EX(CMU )=6.639E-02;EX(ENUT)=3.312E-03 +EX(YH3D)=2.861E-02 WHEN KW,2 +EX(P1 )=3.183E-01;EX(V1 )=1.864E-01 +EX(W1 )=2.012E+00;EX(KE )=4.317E+00 +EX(EP )=2.410E+02;EX(YH3D)=7.309E-02 +EX(ZGM )=3.021E-01;EX(YH )=1.200E-03 +EX(YGP )=6.195E-02;EX(WH )=1.889E+00 +EX(LEN1)=1.939E-02;EX(OMEG)=2.035E+02 +EX(ENUT)=1.444E-02 WHEN KWR,3 +EX(P1 )=1.336E-01;EX(V1 )=2.266E-01 +EX(W1 )=2.679E+00;EX(KE )=1.494E+00 +EX(EP )=7.109E+01;EX(XWP )=1.000E-10 +EX(ZGM )=3.021E-01;EX(YH )=5.939E-04 +EX(YGP )=6.195E-02;EX(WH )=3.669E+00 +EX(LEN1)=4.484E-02;EX(YH3D)=3.629E-02 +EX(CDWS)=1.069E+04;EX(DWDZ)=6.647E+00 +EX(DWDY)=7.429E+01;EX(DVDZ)=2.022E+00 +EX(DVDY)=6.713E+00;EX(GEN1)=2.560E+04 +EX(OMEG)=2.395E+02 +EX(ENUT)=5.027E-03;EX(FBP )=1.000E+00 WHEN KWM,3 +EX(ZGM )=3.021E-01 +EX(YH )=5.835E-04;EX(YGP )=6.195E-02 +EX(EP )=6.861E+01;EX(WH )=3.764E+00 +EX(SIGW)=1.168E+00;EX(SIGK)=1.000E+00 +EX(P1 )=1.045E-01;EX(V1 )=2.149E-01 +EX(W1 )=2.613E+00;EX(KE )=1.265E+00 +EX(LEN1)=6.156E-02;EX(CDWS)=8.810E+03 +EX(OMEG)=2.739E+02;EX(ENUT)=4.786E-03 +EX(YH3D)=3.469E-02;EX(YH )=5.673E-04 WHEN KWS,3 +EX(EP )=7.554E+01;EX(ZGM )=3.021E-01 +EX(YGP )=6.195E-02;EX(ENUT)=2.507E-02 +EX(SIGW)=1.168E+00;EX(SIGK)=1.000E+00 +EX(P1 )=1.027E-01;EX(V1 )=2.140E-01 +EX(W1 )=2.609E+00;EX(KE )=1.236E+00 +EX(EP )=6.726E+01;EX(YH )=5.669E-04 +EX(WH )=3.795E+00;EX(LEN1)=1.519E-02 +EX(CDWS)=8.912E+03;EX(GEN1)=2.684E+04 +EX(OMEG)=2.773E+02;EX(ENUT)=4.012E-03 +EX(LEN1)=1.041E-02;EX(YH3D)=3.425E-02 ENDCASE LIBREF = 310 STOP