TEXT(Realisable KE_2D Elliptic Plane Free Jet: T310 TITLE DISPLAY The problem considered is the submerged free turbulent plane jet in stagnant surroundings. The jet issues from a slot H at a Reynolds number of 77,000. The calculation exploits symmetry, and is carried out with the elliptic solver for a domain which is 30H long by 7.5H wide. Calculations are performed with the standard k-e & k-w models, and the following k-e variants: Chen-Kim, RNG and Realisable k-e models. The experimental data indicate a velocity half- width spreading rate of 0.11 in the self-similar region of the jet. The present calculations predict the following spreading rates: data ke chen RNG Realisable k-w dy/dz .11 .099 .085 .111 .107 ? Apart from the k-w model, all results are in good agreement with the data, but it should be mentioned that the present mesh doesn't yield grid-independent results. The half-width spreading rate is calculated approximately using In-Form commands and then written to the text-output file named inforout. As noted by Menter [1992] the current form of Wilcox k-w model dates from 1988 and it predicts much higher eddy viscosities than the k-e model, which leads to a much larger jet spreading rate. Therefore, this form of the model isn't suited for the prediction of free jets, but it is coded here in preparation for a future extension to the Wilcox 1998 model which performs much better for free jets. - F.R.Menter, "Improved 2-equation k-w turbulence models for aerodynamic flows", NASA TN 103975, (1992). ENDDIS GROUP 1. Run title and other preliminaries REAL(WINJ,WIN_FS,KE_FS,EP_FS,KEINJ,EPINJ,HSLOT,PRADO,PRADI,CD) REAL(OM_FS,OMINJ,LAMVIS,ENUT_FS,TINJ,TIN_FS,REYNO) REYNO=7.7E4 HSLOT=0.058;PRADI=0.5*HSLOT;PRADO=15.*PRADI CD=0.1643 ** jet-inflow conditions WINJ=20.;TINJ=0.05 KEINJ=(TINJ*WINJ)**2; EPINJ=CD*KEINJ**1.5/(0.1*PRADI) ** laminar kinematic viscosity LAMVIS=WINJ*2.*HSLOT/REYNO LAMVIS ** free-stream conditions WIN_FS=WINJ/100.;TIN_FS=0.05 ENUT_FS=5.*LAMVIS KE_FS=(TIN_FS*WIN_FS)**2;EP_FS=0.09*KE_FS**2/ENUT_FS GROUP 3. X-direction grid specification GROUP 4. Y-direction grid specification INTEGER(NYF,NYO,NYG) NYF=10;NYO=50;NYG=NYF+NYO NREGY=2;NY=46 IREGY=1;GRDPWR(Y,NYF,PRADI,1.0) IREGY=2;GRDPWR(Y,NYO,-(PRADO-PRADI),1.04) GROUP 5. Z-direction grid specification NZ=120;GRDPWR(Z,NZ,-(30.*HSLOT),1.01) GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1);STORE(ENUT) SOLUTN(P1,P,P,Y,P,P,P);SOLUTN(V1,P,P,P,P,P,N) SOLUTN(W1,P,P,P,P,P,N) INTEGER(JKO);JKO=0 CHAR(CTURB) MESG( Enter the required turbulence model: MESG( KEM - Standard k-e model MESG( CKM - Chen Kim k-e model MESG( RNG - RNG k-e model MESG( KOM - Wilcox k-omega model MESG( RKE - Realisable k-e model (default) MESG( READVDU(CTURB,CHAR,RKE) CASE :CTURB: OF WHEN KEM,3 + TEXT(standard KE_2D Elliptic Plane Free Jet + MESG(Standard k-e model + TURMOD(KEMODL) WHEN CKM,3 + TEXT(Chen-Kim KE_2D Elliptic Plane Free Jet + MESG(Chen Kim k-e model + TURMOD(KECHEN) WHEN RNG,3 + TEXT(RNG KE_2D Elliptic Plane Free Jet + MESG(RNG k-e model + TURMOD(KERNG) WHEN KOM,3 + TEXT(KO_2D Elliptic Plane Free Jet + MESG(k-omega model + TURMOD(KOMODL) + STORE(EP);OMINJ=EPINJ/(0.09*KEINJ) + OM_FS=EP_FS/(0.09*KE_FS) + JKO=1 WHEN RKE,3 + TEXT(Realisable KE_2D Elliptic Plane Free Jet + MESG(RK k-e model + TURMOD(KEREAL) + STORE(CMU,C1E) + OUTPUT(CMU,P,P,P,P,Y,Y);OUTPUT(C1E,P,P,P,P,Y,Y) ENDCASE GROUP 8. Terms (in differential equations) & devices GROUP 9. Properties of the medium (or media) ENUL=LAMVIS GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=WIN_FS PATCH(INIT,INIVAL,1,NX,1,NYF,1,NZ,1,LSTEP) INIT(INIT,W1,0.0,WINJ); FIINIT(KE)=KEINJ; FIINIT(EP)=EPINJ GROUP 13. Boundary conditions and special sources ** Jet Inlet Conditions INLET(IN1,LOW,1,NX,1,NYF,1,1,1,LSTEP) VALUE(IN1,P1,RHO1*WINJ); VALUE(IN1,W1,WINJ) VALUE(IN1,KE,KEINJ);VALUE(IN1,EP,EPINJ) IF(JKO.GT.0) THEN +VALUE(IN1,OMEG,OMINJ);FIINIT(OMEG)=OMINJ ENDIF ** Free Boundary Conditions INLET(IN2,LOW,1,NX,#2,#2,1,1,1,LSTEP) VALUE(IN2,P1,RHO1*WIN_FS);VALUE(IN2,W1,WIN_FS) VALUE(IN2,KE,KE_FS);VALUE(IN2,EP,EP_FS) IF(JKO.GT.0) THEN +VALUE(IN2,OMEG,OM_FS) ENDIF PATCH(FREEB,NORTH,1,NX,NYG,NYG,1,NZ,1,LSTEP) COVAL(FREEB,W1,ONLYMS,WIN_FS) COVAL(FREEB,KE,ONLYMS,KE_FS);COVAL(FREEB,EP,ONLYMS,EP_FS) COVAL(FREEB,P1,1.E3,0.0) IF(JKO.GT.0) THEN +VALUE(FREEB,OMEG,OM_FS) ENDIF OUTLET(OUT,HIGH,1,NX,1,NYG,NZ,NZ,1,LSTEP) COVAL(OUT,P1,1.E3,0.0) VALUE(OUT,V1,0.0); VALUE(OUT,W1,0.0) VALUE(OUT,KE,0.0);VALUE(OUT,EP,0.0) IF(JKO.GT.0) THEN +VALUE(OUT,OMEG,0.0) ENDIF GROUP 15. Termination of sweeps LSWEEP=1000 GROUP 16. Termination of iterations GROUP 17. Under-relaxation devices KELIN=3 REAL(RLXFAC); RLXFAC=8.*ZWLAST/WINJ/NZ RELAX(V1,FALSDT,RLXFAC); RELAX(W1,FALSDT,RLXFAC) RELAX(KE,LINRLX,0.4); RELAX(EP,LINRLX,0.4) CASE :CTURB: OF WHEN RKE,3 + RELAX(KE,FALSDT,RLXFAC); RELAX(EP,FALSDT,RLXFAC) + RELAX(ENUT,LINRLX,0.2);VARMAX(ENUT)=0.1 WHEN KOM,3 +RLXFAC=ZWLAST/WINJ/NZ +RELAX(V1,FALSDT,4.*RLXFAC);RELAX(W1,FALSDT,4.*RLXFAC) +RELAX(EP,LINRLX,1.0);RELAX(ENUT,LINRLX,0.25) +RELAX(KE,FALSDT,4.*RLXFAC);RELAX(OMEG,FALSDT,4.*RLXFAC) ** ENUT is limited to 0.06 m^2/s to prevent an unrealistic final solution +VARMAX(ENUT)=0.06 +LSWEEP=1800 +OUTPUT(EP,P,P,P,P,Y,Y) ENDCASE GROUP 18. Limits on variables or increments to them GROUP 20. Preliminary print-out ECHO=T GROUP 21. Print-out of variables NYPRIN=1 GROUP 22. Spot-value print-out TSTSWP=-1 IYMON=NYF+2;IZMON=NZ-1;NPLT=10;ITABL=3;NZPRIN=1 GROUP 23. Field print-out and plot control GROUP 24. Dumps for restarts ** compute half-width spreading rate & print to inforout file (stored of wh is 0.5*W1[&1&] ) (stored of YGP is YG) PATCH(HWIDTH,CELL,1,NX,2,NY-1,1,NZ-1,1,LSTEP) (stored of YH is 0.0) (stored of YH at HWIDTH is YGP with IF(W1.GT.WH.AND.W1[,+1,].LT.WH)) INTEGER(IZ1);IZ1=3*NZ/4 PATCH(HWIDTH1,CELL,1,NX,2,NY-1,IZ1,IZ1,1,LSTEP) PATCH(HWIDTH2,CELL,1,NX,2,NY-1,NZ-1,NZ-1,1,LSTEP) (make1 dyhdz) (MAKE1 YH1) (store1 of YH1 at HWIDTH1 is MAX(YH,1.1E-10)) (PRINT YH1 IS YH1) (MAKE1 YH2) (store1 of YH2 at HWIDTH2 is MAX(YH,1.1E-10)) (PRINT YH2 IS YH2) (stored of ZGM is ZG) (store1 of dyhdz is (YH2-YH1)/(ZGM[,1,NZ-1]-ZGM[,1,:IZ1:])) (PRINT DYHDZ IS DYHDZ) RESFAC=1.E-4 DISTIL=T CASE :CTURB: OF WHEN KEM,3 +EX(P1 )=3.101E-01;EX(V1 )=3.720E-01 +EX(W1 )=5.087E+00;EX(KE )=3.989E+00 +EX(EP )=1.900E+02;EX(ZGM )=7.009E-01 +EX(YH )=1.074E-03;EX(YGP )=1.437E-01 +EX(WH )=8.172E+00;EX(EPKE)=2.334E+01 +EX(ENUT)=1.441E-02 WHEN CKM,3 +EX(P1 )=2.395E-01 +EX(V1 )=3.287E-01;EX(W1 )=4.952E+00 +EX(KE )=3.198E+00;EX(EP )=1.699E+02 +EX(ZGM )=7.009E-01;EX(YH )=8.861E-04 +EX(YGP )=1.437E-01;EX(WH )=8.602E+00 +EX(EPKE)=2.586E+01;EX(ENUT)=1.091E-02 WHEN RNG,3 +EX(P1 )=3.011E-01;EX(ENUT)=1.434E-02 +EX(V1 )=3.651E-01;EX(W1 )=5.020E+00 +EX(KE )=3.966E+00;EX(EP )=1.758E+02 +EX(ZGM )=7.009E-01;EX(YH )=1.055E-03 +EX(YGP )=1.437E-01;EX(WH )=8.265E+00 +EX(EPKE)=2.425E+01 WHEN KOM,3 +EX(V1 )=4.618E-01;EX(W1 )=5.061E+00 +EX(ZGM )=7.009E-01;EX(WH )=5.354E+00 +EX(YH )=2.159E-03;EX(YGP )=1.437E-01 +EX(P1 )=8.879E-01;EX(KE )=1.700E+01 +EX(EP )=5.206E+02;EX(OMEG)=1.676E+02 +EX(ENUT)=5.574E-02;EX(EPKE)=1.000E-10 WHEN RKE,3 +EX(P1 )=3.541E-01;EX(V1 )=3.868E-01 +EX(W1 )=5.143E+00;EX(KE )=4.496E+00 +EX(EP )=2.122E+02;EX(ZGM )=7.009E-01 +EX(YH )=1.171E-03;EX(YGP )=1.437E-01 +EX(WH )=7.890E+00;EX(C1E )=5.548E-01 +EX(DWDZ)=5.034E+00;EX(DWDY)=7.288E+01 +EX(DVDZ)=1.564E+00;EX(DVDY)=5.176E+00 +EX(EPKE)=2.221E+01;EX(CMU )=7.721E-02 +EX(ENUT)=1.805E-02 ENDCASE