TALK=T;RUN( 1, 1) ** LOAD(x110) from the x Input Library GROUP 1. Run title and other preliminaries TEXT(T302: 2D FLOW THROUGH AN ORIFICE PLATE) TITLE DISPLAY The case considered is 2d turbulent axisymmetric incompressible flow through an orifice plate of 11mm thickness located in a pipe. The pipe diameter D is 92mm and the hole in the orifice plate has a diameter H of 64 mm. The flow Reynolds number is 75,000 based on D and the inlet bulk velocity Uin. The orifice plate has practical value as a flowmeter. The present case has been studied experimentally and numerically by Erdal et al (PHOENICS Turbulence Modelling Seminar, CHAM, (1995) ). The boundary conditions correspond to an inlet flow of fully-developed turbulent flow located 10D upstream of the plate, and an outlet condition of fixed pressure 17.5D downstream of the plate, and no-slip conditions at the walls. Turbulence is represented via the high-Re forms of the Wilcox 1988, Wilcox 2008, Menter or SST k-w models plus equilibrium wall functions. ENDDIS The calculation employs 85 axial grid cells, of which 16 are located within the orifice plate, 31 upstream and 38 downsteam of the plate. The solution is known to be sensitive to the grid spacing in the vicinity of the upstream edge of the orifice plate, and grid independence is not accomplished with the current mesh. In particular, the recirculation zone within the orifice requires greater resolution in order to model accurately the radial extent of the vena contracta, and hence the pressure drop across the orifice plate. A comparison between the predicted and measured pressure drop DP ( in Pa ) is given below: EXPT KW KWR KWM KW-SST DP = 430 312 326 312 320 Higher-order schemes are beneficial for this case, as exemplified by Library Case N110, which uses the standard k-e model. AUTOPLOT USE FILE phida 3 d 1 p1 y 1;div x .092 1;shift x -10 1;plot 1;level y 430. level y -330;scale x -10 20;scale y -350 450 msg Axial pressure distribution msg Pressto continue pause ENDUSE PHOTON USE p 10 1 0.20443E+04 0.15633E+04 CR gr ou x 1 use patgeo;vec x 1 y 1 30 z 10 65 sh mag gr 9 0.21789E+04 0.18043E+04 CR msg Velocity vectors msg Press to continue pause cl;con p1 x 1 y 1 30 z 10 65 shade;int 10 use patgeo msg Pressure contours msg Press to continue cl;mag gr 1 mag gr 70 0.21853E+04 0.18433E+04 CR gr x 1;use patgeo;con p1 x 1 y 1 30 z 15 65 shade; int 10;use patgeo ENDUSE REAL(UR1,UR2,PR,RE,PI,UD,VIN,TSTEP,KEIN,EPIN,PD,PT,FRIC,DELT,US) REAL(VMAX,AN,GY,GYP,GYM,GWI,GLM,GYDR,GYDR2,GYDR3,GYDR4,GKI,GEPI) REAL(GOMEG,US2);INTEGER(F,UL,NZ11,NZ12,NZ13);CHAR(CTURB,SCHM) INTEGER(NZ1,NZ2,NZ3,NZ4,NZ5,NZ6,NZ7,NZ8,NZ9,NZ10,NY1,NY2,NY3) RHO1=1.2;ENUL=15.0E-06 ** UR1=orifice hole radius PR=pipe radius UR1=0.032;PI=3.141592654;UD=PI/180.0;PR=0.046;PD=2*PR PT=11.E-3;RE=7.5E4;VIN=RE*ENUL/PD FRIC=1.0/(1.82*LOG10(RE)-1.64)**2 US=VIN*(FRIC/8.0)**0.5;US2=US*US;DELT=1.5*30.0*ENUL/US2 GROUP 3. X-direction grid specification CARTES=F;NX=1;GRDPWR(X,NX,PI/8,1) GROUP 4. Y-direction grid specification NY1=19;NY2=10;NY3=1;NREGY=3 IREGY=1;GRDPWR(Y,NY1,UR1,-1.2) IREGY=2;GRDPWR(Y,NY2,PR-UR1-DELT,1.2) IREGY=3;GRDPWR(Y,NY3,DELT,1) GROUP 5. Z-direction grid specification ** region z1 6D NZ1= 5 cells ** region z2 3D NZ2= 5 cells ** region z3 D-T NZ3= 5 cells ** region z4 T NZ4=12 cells ** region z5 T NZ5=17 cells (orifice plate) ** region z6 T NZ6=10 cells ** region z7 2.5D-T NZ7=16 cells ** region z8 15D NZ8=15 cells NZ1=5;NZ2=5;NZ3=5;NZ4=12;NZ5=17;NZ6=10;NZ7=16;NZ8=15 NREGZ=8 Upstream region IREGZ=1;GRDPWR(Z,NZ1,6*PD,-1.3) IREGZ=2;GRDPWR(Z,NZ2,3*PD,-1.5) IREGZ=3;GRDPWR(Z,NZ3,1*PD-PT,-1.4) ORIFICE - 1 plate thickness upsteam, orifice, then 1 more plate thickness downstream IREGZ=4;GRDPWR(Z,NZ4, PT,-1.3) IREGZ=5;GRDPWR(Z,-NZ5,PT, 1.4) IREGZ=6;GRDPWR(Z,NZ6, PT, 1.2) Downstream region IREGZ=7;GRDPWR(Z,NZ7, 2.5*PD-pt, 1.35) IREGZ=8;GRDPWR(Z,NZ8, 15*PD, 1.35) F=NZ1+NZ2+NZ3+1;UL=F+NZ4 GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1);SOLUTN(P1,Y,Y,Y,N,N,N) MESG( Enter the required turbulence model: MESG( KW - Wilcox 1988 k-w model (default) MESG( KWR - Wilcox 2008 k-w model MESG( KWM - Menter 1992 k-w model MESG( KWS - k-w SST model MESG( READVDU(CTURB,CHAR,KW) CASE :CTURB: OF WHEN KW,2 TEXT(T302: Wilcox 1988 k-w Orifice-Plate Flow + MESG(Wilcox 1988 k-w model (default) + TURMOD(KWMODL) WHEN KWR,3 + TEXT(T302: Wilcox 2008 k-w Orifice-Plate Flow + MESG(Wilcox 2008 k-w model + TURMOD(KWMODLR);STORE(FBP);FIINIT(FBP)=1.0 WHEN KWM,3 TEXT(T302: Menter k-w Orifice-Plate Flow + MESG(Menter 1992 k-w model + TURMOD(KWMENTER);STORE(BF1);FIINIT(BF1)=1.0 WHEN KWS,3 TEXT(T302: k-w SST Flow Orifice-Plate Flow + MESG( k-w SST model + TURMOD(KWSST);STORE(BF1,BF2,GEN1) + STORE(SIGK,SIGW,CDWS) + FIINIT(BF1)=1.0;FIINIT(BF2)=1.0 ENDCASE STORE(ENUT,LEN1,YPLS) GROUP 8. Terms (in differential equations) & devices GROUP 11. Initialization of variable or porosity fields FIINIT(V1)=0.0;FIINIT(W1)=VIN KEIN=2.*US2;EPIN=0.1643*(KEIN**1.5)/(0.09*PR) FIINIT(KE)=KEIN;FIINIT(EP)=EPIN FIINIT(OMEG)=FIINIT(EP)/(0.09*FIINIT(KE)) *** Blockage for plate WALLCO=GRND2 ** Initialization of variables in blocked region STORE(PRPS) PATCH(STEP,INIVAL,1,NX,#2,NY,#5,#5,1,LSTEP) INIT(STEP,PRPS,0.,198) EGWF=T GROUP 13. Boundary conditions and special sources *** Inlet boundary; fully-developed turbulent flow AN=1./SQRT(FRIC) VMAX=VIN*(AN+1.)*(2.*AN+1.)/(2*AN*AN);AN=1./AN;GYM=0. DO JJ=1,NY + GYP=YFRAC(JJ)*YVLAST;GY=.5*(GYP+GYM);GYDR=GY/PR + GYDR2=GYDR*GYDR;GYDR4=GYDR2*GYDR2 + GWI=VMAX*(1.-GYDR)**AN;GLM=0.14-0.08*GYDR2-0.06*GYDR4;GLM=GLM*PR + GYDR3=GYDR2*GYDR;GKI=1.+2.*GYDR/3.+10.*GYDR3/3.;GKI=GKI*US2 + GEPI=0.1643*GKI**1.5/GLM;GOMEG=GEPI/(0.09*GKI) + PATCH(IN:JJ:,LOW,1,NX,JJ,JJ,1,1,1,1) + COVAL(IN:JJ:,P1,FIXFLU,RHO1*GWI) + COVAL(IN:JJ:,V1,ONLYMS,0.0);COVAL(IN:JJ:,W1,ONLYMS,GWI) + COVAL(IN:JJ:,KE,ONLYMS,GKI);COVAL(IN:JJ:,EP,ONLYMS,GEPI) + COVAL(IN:JJ:,OMEG,ONLYMS,GOMEG) + GYM=GYP ENDDO PATCH(OUTLET, HIGH,1,NX,1,NY,NZ,NZ,1,1) COVAL(OUTLET,P1,1E3,0.0) *** Wall friction for pipe wall PATCH(T1,NWALL,1,NX,NY,NY,1,NZ,1,1) COVAL(T1,W1,LOGLAW,0.0) COVAL(T1,KE,LOGLAW,LOGLAW);COVAL(T1,OMEG,LOGLAW,LOGLAW) GROUP 15. Termination of sweeps LSWEEP=800 GROUP 16. Termination of iterations GROUP 17. Under-relaxation devices TSTEP=30*PD/VIN/NZ RELAX(U1,FALSDT,TSTEP) RELAX(V1,FALSDT,TSTEP);RELAX(W1,FALSDT,TSTEP) RELAX(KE,FALSDT,TSTEP); RELAX(OMEG,FALSDT,TSTEP) CASE :CTURB: OF WHEN KWM,3 +RELAX(BF1,LINRLX,0.01) WHEN KWS,3 +RELAX(BF1,LINRLX,0.2);RELAX(BF2,LINRLX,0.2) ENDCASE GROUP 23. Field print-out and plot control IYMON=NY1-2;IZMON=UL+NZ5/2;TSTSWP=-1 NYPRIN=2;NZPRIN=1;ITABL=3;IZPRF=UL-5;IZPRL=UL+NZ5+5 SPEDAT(SET,GXMONI,PLOTALL,L,T) SPEDAT(SET,OUTPUT,NOFIELD,L,T) OUTPUT(ENUT,Y,N,Y,N,Y,Y) DISTIL=T CASE :CTURB: OF WHEN KW,2 +EX(P1 )=1.328E+02;EX(V1 )=1.398E+00 +EX(W1 )=1.533E+01;EX(KE )=9.233E+00 +EX(EP )=4.516E+03;EX(PRPS)=9.267E-01 +EX(YPLS)=9.045E-01;EX(LEN1)=4.220E-03 +EX(ENUT)=5.227E-03;EX(OMEG)=2.078E+03 WHEN KWR,3 EX(P1 )=1.624E+02;EX(V1 )=1.428E+00 EX(W1 )=1.585E+01;EX(KE )=4.060E+00 EX(EP )=1.628E+03;EX(PRPS)=9.267E-01 EX(YPLS)=8.747E-01;EX(LEN1)=3.467E-03 EX(ENUT)=2.081E-03;EX(DWDZ)=2.358E+02 EX(DWDY)=6.990E+02;EX(DVDZ)=1.659E+02 EX(DVDY)=1.855E+02;EX(DUDX)=7.011E+01 EX(GEN1)=1.086E+07;EX(FBP )=8.156E-01 EX(XWP )=1.089E+01;EX(OMEG)=1.984E+03 WHEN KWM,3 +EX(P1 )=1.356E+02;EX(V1 )=1.396E+00 +EX(W1 )=1.540E+01;EX(KE )=8.527E+00 +EX(EP )=4.282E+03;EX(PRPS)=9.267E-01 +EX(YPLS)=8.851E-01;EX(LEN1)=3.971E-03 +EX(ENUT)=4.714E-03;EX(LTLS)=2.558E-04 +EX(WDIS)=1.348E-02;EX(BF1 )=7.447E-01 +EX(OMEG)=2.187E+03 WHEN KWS,3 +EX(P1 )=1.603E+02;EX(V1 )=1.443E+00 +EX(W1 )=1.586E+01;EX(KE )=3.998E+00 +EX(EP )=1.387E+03;EX(PRPS)=9.267E-01 +EX(YPLS)=8.866E-01;EX(LEN1)=2.637E-03 +EX(ENUT)=1.986E-03;EX(CDWS)=3.064E+05 +EX(SIGW)=1.582E+00;EX(SIGK)=1.527E+00 +EX(LTLS)=2.558E-04;EX(WDIS)=1.348E-02 +EX(GEN1)=1.604E+07;EX(BF2 )=8.647E-01 +EX(BF1 )=6.000E-01;EX(OMEG)=2.211E+03 ENDCASE STOP