TALK=T;RUN( 1, 1) TEXT(2D BLUFF-BODY STABILISED METHANE JET: T301 TITLE DISPLAY The case considered is 2d steady, axisymmetric, turbulent non-reacting flow behind a bluff-body flame holder. The flow configuration consists of a 5.4mm diameter methane jet seperated from an outer, annular air flow by a 50mm diameter bluff body. The flow is characterised by reverse flow in the annular air stream and exhibits well-defined fuel and annular air stagnation points along the centre-line. This case has been studied experimentally by Schefer et al (Comb.Sci.&Tech., Vol.56, p101, 1987]) and was the subject of an ASCF Ercoftac CFD Workshop (Org: D.Garreton & O.Simonin, EDF, Chatou, France, 1994). ENDDIS The problem requires very high computational resolution for numerical accuracy, and like other disk-related predictions (e.g.McGuirk et al[1985] & Durao et al[1991]) in the literature, the standard k-e model underestimates the size of the recirculation zone, and hence the location of the first stagnation point. The near field of these flows are also known to be sensitive to the inlet conditions, and no assessment has been made here of the influence of inlet values, and no grid refinement studies have been carried out. The measured fuel stagnation point is located 38.7mm downstream of the body while the air stagnation point occurs at about 63mm. The table below compares these experimental values with those computed from the various turbulence models. KE CK RNG RKE KWR KWS DATA Fuel Xstag 25.8 35.0 34.2 13.1 33.7 22.1 38.7 Air Xstag 57.5 64.6 62.6 62.9 51.5 51.2 63.0 1) R.W.Schefer, M.Namazian and J.Kelly, ‘Velocity measurements in a turbulent non-premixed bluff-body stabilised flame’, Comb.Sci.&Tech., Vol.56, p101, (1987). 2) J.J.McGuirk, C.Papadimitriou and A.M.K.P.Taylor, ‘Reynolds stress model calculations of two-dimensional plane and axisymmetric recirculating flows’, Proc. 5th Turbulent Shear Flows Conference, Cornell Univ., USA, (1985). 3) D.F.G.Durao, G.Knittel, J.C.F.Pereira and J.M.P.Rocha, ‘Measurements and modelling of the turbulent near wake flow of a disk with a central jet, Proc. 8th Turbulent Shear Flows Conference, Technical University of Munich, 17.5, (1991). * GROUP 1. Run title and other preliminaries * TEXT(2D BLUFF-BODY STABILISED METHANE JET AUTOPLOT USE FILE phida 3 D 1 W1 Y 1 PLOT;SCALE X 0 .15;LEVEL X .0441;LEVEL X .0684 LEVEL Y 0. ENDUSE PHOTON USE p 0.20443E+04 0.15633E+04 CR gr ou x 1;vec x 1 sh con w1 x 1 val 1 0. mag gr 2 0.29927E+04 0.90539E+03 CR ENDUSE BOOLEAN(KWMOD);KWMOD=F CHAR(CTURB) REAL(RHOAIR,TIN,RAIR,RCON,RHOGAS,DGAS,DBODY,DANN,DTF,ENUAIR) REAL(WGAS,KEGAS,EPGAS,WAIR,KEAIR,EPAIR,WARP,KEARP,EPARP) REAL(GYM,GYP,GYDR,GY,GYDR2,GYDR3,GYDR4,GLM,GWI,GEPI,GKI,GOMI) REAL(Y1,Y2,Y3,Y4,Z1,Z2,RGAS,FRIC,REY,US,US2,OMGAS,OMAIR,OMARP) INTEGER(NY1,NY2,NY3,NY4,NZ1,NZ2,NYI);CHAR(SCHM) PRESS0=1.01325E5;RAIR=8314.43/29.;TIN=298.;RCON=8314.43/16. ENUAIR=1.58E-5 DGAS=5.4E-3;DBODY=0.05;DANN=0.1;RGAS=0.5*DGAS ** Axial geometry Z1=2.*DANN;NZ1=85 ** Central-jet radial geometry Y1=RGAS;NY1=12 ** Bluff-body radial geometry Y2=0.5*DBODY;NY2=26 ** Annular-jet radial geometry Y3=0.5*DANN;NY3=15 ** External air-stream radial geometry Y4=0.5*(2.*DANN);NY4=12 NYI=NY1+NY2+NY3 ** gas central-jet injection WGAS=21. KEGAS=1.6;EPGAS=1100. RHOGAS=PRESS0/(RCON*TIN) ** air annular-jet injection RHOAIR=PRESS0/(RAIR*TIN) WAIR=25. KEAIR=(0.007*WAIR)**2;EPAIR=0.1643*(KEAIR**1.5)/(0.09*(Y3-Y2)) OMAIR=EPAIR/(0.09*KEAIR) ** external air stream WARP=0.1;KEARP=0.012;EPARP=0.019;OMARP=EPARP/(0.09*KEARP) KEARP=(0.01*WARP)**2;EPARP=0.09*KEARP*KEARP/ENUL OMARP=EPARP/(0.09*KEARP) REY=WGAS*DGAS/ENUAIR;FRIC=1.0/(1.82*LOG10(REY)-1.64)**2 US=WGAS*(FRIC/8.0)**0.5;US2=US*US KEGAS=2.*US2;EPGAS=0.1643*(KEGAS**1.5)/(0.09*Y1) OMGAS=EPGAS/(0.09*KEGAS) REY GROUP 3. X-direction grid specification CARTES=F;XULAST=0.1 GROUP 4. Y-direction grid specification NREGY=4;REGEXT(Y,1) fuel jet IREGY=1;GRDPWR(Y,NY1,Y1,1.0) bluff body IREGY=2;GRDPWR(Y,-NY2,Y2-Y1,1.1) air jet IREGY=3;GRDPWR(Y,-NY3,Y3-Y2,1.1) free stream IREGY=4;GRDPWR(Y,NY4,Y4-Y3,1.4) GROUP 5. Z-direction grid specification GRDPWR(Z,NZ1,Z1,1.3) GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,C1);SOLUTN(P1,Y,Y,Y,P,P,P) SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N) SOLUTN(C1,Y,Y,Y,P,P,N);STORE(ENUT,RHO1) SOLVE(P1,W1,V1);SOLUTN(P1,Y,Y,Y,N,N,N);STORE(ENUT) SOLUTN(W1,P,P,P,P,P,N);SOLUTN(V1,P,P,P,P,P,N) MESG( Enter the required turbulence model: MESG( KE - Standard k-e model (default) MESG( CK - Chen-Kim k-e model MESG( RNG - RNG k-e model MESG( RKE - Realisable k-e model MESG( KWR - Wilcox 2008 k-w model MESG( KWS - k-w SST model MESG( READVDU(CTURB,CHAR,KE) CASE :CTURB: OF WHEN KE,2 +TEXT(KE-2D BLUFF-BODY STABILISED METHANE JET + MESG(Standard k-e model + TURMOD(KEMODL) WHEN CK,2 +TEXT(CK-2D BLUFF-BODY STABILISED METHANE JET + MESG(Chen-Kim k-e model + TURMOD(KECHEN) WHEN RNG,3 + TEXT(RNG-2D BLUFF-BODY STABILISED METHANE JET + MESG(RNG k-e model + TURMOD(KERNG) + STORE(ETA,ALF,GEN1) + OUTPUT(ALF,Y,N,P,Y,Y,Y);OUTPUT(ETA,Y,N,P,Y,Y,Y) WHEN RKE,3 + TEXT(RKE-2D BLUFF-BODY STABILISED METHANE JET + MESG(Realisable k-e model + TURMOD(KEREAL);STORE(C1E) + OUTPUT(CMU,P,P,P,P,Y,Y);OUTPUT(C1E,P,P,P,P,Y,Y) WHEN KWR,3 + TEXT(KWR-2D BLUFF-BODY STABILISED METHANE JET + MESG(Wilcox 2008 k-w model + TURMOD(KWMODLR);STORE(FBP);FIINIT(FBP)=1.0 + KWMOD=T WHEN KWS,3 + TEXT(KW SST-2D BLUFF-BODY STABILISED METHANE JET + MESG(Menter k-w SST model + TURMOD(KWSST) + KWMOD=T + STORE(BF1,BF2,GEN1,SIGK,SIGW,CDWS) + STORE(CWAL,CWBE) + FIINIT(BF1)=1.0;FIINIT(BF2)=1.0 ENDCASE GROUP 8. Terms (in differential equations) & devices DENPCO=T GROUP 9. Properties of the medium (or media) TMP1=298. RHO1=LINSCAL;RHO1A=RHOAIR;RHO1B=RHOGAS-RHOAIR;RHO1C=16 RHO1=RECSCAL;RHO1A=1./RHOAIR;RHO1B=1./RHOGAS-1./RHOAIR;RHO1C=16 ENUL=ENUAIR;PRT(C1)=0.7 GROUP 10. Inter-phase-transfer processes and properties GROUP 11. Initialization of variable or porosity fields * ** Bluff-body (this could be removed) WALLCO=GRND3 FIINIT(RHO1)=RHOAIR;FIINIT(KE)=KEAIR;FIINIT(EP)=EPAIR IF(KWMOD) THEN + FIINIT(OMEG)=OMAIR ENDIF GROUP 13. Boundary conditions and special sources * ** Central fuel injection (stored of WIN at FUEL is WGAS*(1.2342-0.2916*YG/RGAS+0.4809*(YG/RGAS)^2-0.629*(YG/RGAS)^3)!ZSLSTR) (stored of KEIN at FUEL is US2*(1.+(2./3.)*(YG/RGAS)+(10./3.)*(YG/RGAS)^3)!ZSLSTR) (stored of MIXL at FUEL is RGAS*(0.14-0.08*(YG/RGAS)^2-0.06*(YG/RGAS)^4)!ZSLSTR) (stored of EPIN at FUEL is 0.1643*KEIN^1.5/MIXL!ZSLSTR) (stored of OMIN at FUEL is EPIN/(0.09*KEIN)!ZSLSTR) PATCH(FUEL,LOW,1,NX,1,NY1,1,1,1,1) (source of P1 at FUEL is COVAL(FIXFLU,RHOGAS*WIN)) (source of W1 at FUEL is COVAL(ONLYMS,WIN)) (source of KE at FUEL is COVAL(ONLYMS,KEIN)) IF(KWMOD) THEN (source of OMEG at FUEL is COVAL(ONLYMS,OMIN)) ELSE (source of EP at FUEL is COVAL(ONLYMS,EPIN)) ENDIF COVAL(FUEL,C1,ONLYMS,1.0) ** Annular air injection PATCH(AIR,LOW,1,NX,#3,#3,1,1,1,LSTEP) COVAL(AIR,P1,FIXFLU,RHOAIR*WAIR) COVAL(AIR,W1,ONLYMS,WAIR);COVAL(AIR,V1,ONLYMS,0.) COVAL(AIR,KE,ONLYMS,KEAIR);COVAL(AIR,EP,ONLYMS,EPAIR) IF(KWMOD) THEN + COVAL(AIR,OMEG,ONLYMS,OMAIR) ENDIF ** Free stream inlet PATCH(FREEIN,LOW,1,1,#4,#4,1,1,1,LSTEP) COVAL(FREEIN,V1,ONLYMS,0.);COVAL(FREEIN,W1,ONLYMS,WARP) COVAL(FREEIN,P1,FIXFLU,WARP*RHOAIR) COVAL(FREEIN,KE,ONLYMS,KEARP);COVAL(FREEIN,EP,ONLYMS,EPARP) IF(KWMOD) THEN + COVAL(FREEIN,OMEG,ONLYMS,OMARP) ENDIF ** Exit boundary OUTLET(EXIT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP);COVAL(EXIT,P1,10.,0.0) ** Free stream outer boundary PATCH(FREES,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(FREES,P1,10.0,0.0);COVAL(FREES,W1,ONLYMS,WARP) COVAL(FREES,KE,ONLYMS,KEARP);COVAL(FREES,EP,ONLYMS,EPARP) IF(KWMOD) THEN + COVAL(FREES,OMEG,ONLYMS,OMARP) ENDIF ** Low wall boundary on bluff body WALL(BLUFF,LOW,1,NX,#2,#2,1,1,1,LSTEP) GROUP 15. Termination of sweeps LSWEEP=1500 CASE :CTURB: OF WHEN RKE,3 + LSWEEP=2500 ENDCASE GROUP 17. Under-relaxation devices DTF=0.1*ZWLAST/WGAS RELAX(P1,LINRLX,1.0) RELAX(V1,FALSDT,DTF);RELAX(W1,FALSDT,DTF) RELAX(C1,LINRLX,0.5);RELAX(RHO1,LINRLX,0.3) IF(KWMOD) THEN + RELAX(KE,LINRLX,0.3);RELAX(OMEG,LINRLX,0.3) ELSE + RELAX(KE,LINRLX,0.3);RELAX(EP,LINRLX,0.3) + KELIN=3 ENDIF GROUP 18. Limits on variables or increments to them VARMIN(C1)=1.E-10;VARMAX(C1)=1.0 GROUP 21. Print-out of variables GROUP 22. Spot-value print-out IXMON=1;IYMON=NY/2;IZMON=NZ-3 GROUP 23. Field print-out and plot control ITABL=3;NPRINT=LSWEEP;TSTSWP=-1;NYPRIN=1 WALPRN=F;NAMGRD=CONV;UCONV=T SPEDAT(SET,GXMONI,PLOTALL,L,T) SPEDAT(SET,OUTPUT,NOFIELD,L,T) OUTPUT(ENUT,Y,N,Y,N,Y,Y) DISTIL=T CASE :CTURB: OF WHEN KE,2 +EX(P1 )=1.834E+01;EX(V1 )=7.568E-01 +EX(W1 )=1.283E+01;EX(KE )=9.551E+00 +EX(EP )=4.140E+03;EX(C1 )=5.194E-02 +EX(EPKE)=2.912E+02;EX(OMIN)=5.132E+01 +EX(EPIN)=3.029E+01;EX(MIXL)=5.950E-07 +EX(KEIN)=8.958E-03;EX(WIN )=4.979E-02 +EX(RHO1)=1.150E+00;EX(ENUT)=3.238E-03 WHEN CK,2 +EX(P1 )=1.882E+01;EX(V1 )=7.377E-01 +EX(W1 )=1.293E+01;EX(KE )=7.044E+00 +EX(EP )=3.513E+03;EX(C1 )=6.410E-02 +EX(EPKE)=3.243E+02;EX(OMIN)=5.132E+01 +EX(EPIN)=3.029E+01;EX(MIXL)=5.950E-07 +EX(KEIN)=8.958E-03;EX(WIN )=4.979E-02 +EX(RHO1)=1.142E+00;EX(ENUT)=2.262E-03 WHEN RNG,3 +EX(P1 )=1.890E+01;EX(V1 )=7.450E-01 +EX(W1 )=1.302E+01;EX(KE )=8.535E+00 +EX(EP )=3.675E+03;EX(C1 )=6.257E-02 +EX(EPKE)=3.110E+02;EX(OMIN)=5.132E+01 +EX(EPIN)=3.029E+01;EX(MIXL)=5.950E-07 +EX(KEIN)=8.958E-03;EX(WIN )=4.979E-02 +EX(GEN1)=4.066E+06;EX(RHO1)=1.143E+00 +EX(ENUT)=2.810E-03;EX(ALF )=3.010E+00 +EX(ETA )=4.570E+00 WHEN RKE,3 +EX(P1 )=1.915E+01;EX(V1 )=8.003E-01 +EX(W1 )=1.284E+01;EX(KE )=1.000E+01 +EX(EP )=3.509E+03;EX(C1 )=3.914E-02 +EX(OMIN)=5.132E+01;EX(EPIN)=3.029E+01 +EX(MIXL)=5.950E-07;EX(KEIN)=8.958E-03 +EX(WIN )=4.979E-02;EX(C1E )=4.510E-01 +EX(DWDZ)=1.532E+02;EX(DWDY)=6.598E+02 +EX(DVDZ)=4.564E+01;EX(DVDY)=9.406E+01 +EX(DUDX)=8.139E+01;EX(EPKE)=2.931E+02 +EX(CMU )=1.307E-01;EX(RHO1)=1.157E+00 +EX(ENUT)=7.337E-03 WHEN KWR,3 +EX(P1 )=2.015E+01;EX(V1 )=8.150E-01 +EX(W1 )=1.315E+01;EX(KE )=1.818E+01 +EX(EP )=5.288E+03;EX(C1 )=5.650E-02 +EX(OMIN)=5.132E+01;EX(EPIN)=3.029E+01 +EX(MIXL)=5.950E-07;EX(KEIN)=8.958E-03 +EX(WIN )=4.979E-02;EX(DWDZ)=1.530E+02 +EX(DWDY)=8.305E+02;EX(DVDZ)=4.655E+01 +EX(DVDY)=1.037E+02;EX(DUDX)=6.987E+01 +EX(GEN1)=4.184E+06;EX(FBP )=8.719E-01 +EX(XWP )=2.393E+03;EX(OMEG)=2.960E+03 +EX(RHO1)=1.148E+00;EX(ENUT)=1.110E-02 WHEN KWS,3 +EX(P1 )=1.845E+01;EX(V1 )=7.901E-01 +EX(W1 )=1.301E+01;EX(KE )=1.337E+01 +EX(EP )=5.154E+03;EX(C1 )=4.632E-02 +EX(OMIN)=5.132E+01;EX(EPIN)=3.029E+01 +EX(MIXL)=5.950E-07;EX(KEIN)=8.958E-03 +EX(WIN )=4.979E-02;EX(CWBE)=8.247E-02 +EX(CWAL)=4.451E-01;EX(CDWS)=6.142E+05 +EX(SIGW)=1.204E+00;EX(SIGK)=1.043E+00 +EX(LTLS)=2.342E-02;EX(WDIS)=1.464E-01 +EX(GEN1)=3.108E+06;EX(OMEG)=2.913E+03 +EX(RHO1)=1.154E+00;EX(ENUT)=4.841E-03 +EX(BF2 )=1.447E-01;EX(BF1 )=4.155E-02 ENDCASE STOP