TALK=T;RUN( 1, 1) PHOTON USE p;;;; view z; Gr ou z 1 msg velocity vectors vec z 1 sh; pause msg wall-distance contours con wdis z 1 fi;0.001; Pause msg effective-viscosity contours con enut z 1 fi;0.001; Pause ENDUSE GROUP 1. RUN TITLE AND OTHER PRELIMINARIES TEXT(2D Turbulent Free Convection In A Cavity: T219 TITLE DISPLAY Turbulent buoyancy-driven air flow in a tall rectangular cavity of 5:1 aspect ratio with a Rayleigh number of 4.E10 is calculated using a buoyancy-extended low-Reynolds-number k-e and k-w models. The vertical walls are isothermal with a temperature difference of 45.8 degC; the horizontal walls are adiabatic. This problem has been studied experimentally by Cheesewright et al (1986) and numerically by Davidson (1990) and Peng & Davidson (1999). The primary objective is to compute the Nusselt number distribution along the hot and cold walls, and the overall Nusselt number. The calculation may be performed with or without the Boussinesq approximation, and the dynamic laminar viscosity is computed from Sutherland's formula. For the Boussinesq approximation, a uniform density and thermal conductivity are employed in the simulations. The main result is the average Nusselt number, and the table below compares the predicted values with the value deduced from the measurements: Data LB KW-R KW-SST Nu,av 160 154 160 153 All of the models produce good agreement with the measured value. ENDDIS Davidson, L., "Calculation of the turbulent buoyancy-driven flow in a rectangular cavity using an efficient solver and two different low-Reynolds number k-e models" Numerical Heat Transfer, Vol.18, p129-147, (1990). Peng,S.H. & Davidson,L.,"Computation of turbulent buoyant flows in enclosures with low-Reynolds-number k-w models", Int.J. Heat & Fluid Flow, Vol.20, p172-184,(1999). Cheesewright,R., King,K.J. & Ziai,S., "Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity Flows", In: J.A.C. Humphrey, C.T. Avedisian, B.W. Le Tourneau, M.M. Chen (Eds.), Significant Questions in Buoyancy Affected Enclosure or Cavity Flows, HTD 60, ASME, p75-81,(1986). BOOLEAN(BOUSS,KO);KO=F MESG( Do you want the Boussinesq approximation? (y/N) READVDU(ANS,CHAR,N) IF(:ANS:.EQ.Y) THEN + BOUSS=T + MESG( Boussinesq approximation ELSE + BOUSS=F + MESG( Variable density option ENDIF REAL(TCOLD,THOT,TDIF,CP,HEIGHT,WIDTH,MU,BETA,TREF,AGRAV) REAL(HCOLD,HHOT,HREF,DTF,VBUOY,RAY,RHO,TBRUNT,COND,GRAS) REAL(PRLAM,ENULAM,GRSHOF,VREF) ** Cavity dimensions HEIGHT=2.5;WIDTH=0.5 ** Temperature levels TCOLD=34.2+273.; TDIF=45.8; THOT=TCOLD+TDIF TREF=0.5*(THOT+TCOLD) ** Physical properties CP=1.008E3;BETA=1./TREF; RHO=353.505/TREF;MU=2.0383E-5 ENULAM=MU/RHO ** Enthalpies HCOLD=CP*TCOLD;HHOT=CP*THOT;HREF=CP*TREF AGRAV=-9.81 VREF=(-AGRAV*BETA*TDIF*HEIGHT)**0.5 GROUP 2. Transience; time-step specification GROUP 3. X-direction grid specification ** for a fine mesh use NX=NY=56 and ALF=3.5 NX=56 REAL(ALF,GAM,ALFM);ALF=3.5;ALFM=-ALF DO JJ=1,NX + GAM=ALF*(2.*(JJ/NX)-1.) + XFRAC(JJ)=-0.5*TANH(GAM)/TANH(ALFM)+0.5 + XFRAC(JJ)=XFRAC(JJ)*WIDTH ENDDO group 4. y-direction grid specification NY=56 DO JJ=1,NY + GAM=ALF*(2.*(JJ/NY)-1.) + YFRAC(JJ)=-0.5*TANH(GAM)/TANH(ALFM)+0.5 + YFRAC(JJ)=YFRAC(JJ)*HEIGHT ENDDO group 7. variables stored, solved & named SOLVE(P1,U1,V1,TEM1) REAL(FRIC,TKEIN,UMAX,MIXL,EPSIN) UMAX=0.4 FRIC=0.001;TKEIN=0.25*UMAX*UMAX*FRIC;MIXL=0.09*WIDTH CHAR(CTURB,TLSC) MESG( Enter the required turbulence model: MESG( LB - Low-Re Lam-Brem. k-e model (default) MESG( KWR - Wilcox 2008 Low-Re k-w model MESG( KWS - Low-Re k-w SST model MESG( READVDU(CTURB,CHAR,LB) CASE :CTURB: OF WHEN LB,2 + TEXT(2D Turb. Buoyant Cavity Flow K-E:T219 + MESG(Low-Re Lam-Bem. k-e model + KELIN=1;TLSC=EP;KELIN=3 + TURMOD(KEMODL-LOWRE);STORE(REYN) WHEN KWR,3 + TEXT(2D Turb. Buoyant Cavity Flow K-W R:T219 + KO=T + MESG(Wilcox 2008 low-Re k-w model + TLSC=OMEG + TURMOD(KWMODLR-LOWRE) + EPSIN=EPSIN/(0.09*TKEIN) WHEN KWS,3 + TEXT(2D Turb. Buoyant Cavity Flow K-W SST:T219 + KO=T + MESG(Menter k-w SST model + TURMOD(KWSST-LOWRE) + TLSC=OMEG + EPSIN=EPSIN/(0.09*TKEIN) + FIINIT(BF1)=1.0;FIINIT(BF2)=1.0 + RELAX(BF1,LINRLX,0.05);RELAX(BF2,LINRLX,1.0) ENDCASE STORE(TREY) ! local turbulent Reynolds number group 8. terms (in differential equations) & devices TERMS(TEM1,N,P,P,P,P,P) group 9. properties of the medium (or media) COND=3.5E-3+7.58E-5*TREF IF(BOUSS) THEN + RHO1=RHO + PRNDTL(TEM1)=-KOND ELSE + STORE(DEN1,KOND) + FIINIT(DEN1)=RHO; FIINIT(KOND)=COND + RHO1=GRND10; RHO1A=0.; RHO1B=1./353.505 + PRNDTL(TEM1)=-GRND4;PRLH1A=3.5E-3;PRLH1B=7.5E-5 ENDIF CP1 =CP ENUL=SUTHLAND;ENULA=1.458E-6;ENULB=110.4 PRT(TEM1)=0.9 PRLAM=MU*CP/COND PRLAM GRSHOF=-AGRAV*BETA*HEIGHT**3*TDIF/(ENULAM)**2 GRSHOF RAY=GRSHOF*PRLAM RAY BETA COND STORE(ENUT,ENUL,YPLS,LEN1) STORE(DWAL,QH,QC,HTH,HTC,NUH,NUC) __________________________________________________________________ SAVE7BEGIN (STORED of DWAL is 0.5*DXU) ** wall heat flux in W/m^2 (STORED QH at HOT is KOND*(THOT-TEM1)/DWAL) (STORED QC at COLD is KOND*(TCOLD-TEM1)/DWAL) ** local heat transfer coefficient (STORED HTH at HOT is QH/TDIF) (STORED HTC at COLD is QC/TDIF) ** Local Nusselt number Nu = h_loc*H/k = (q_loc/DT)*H/k = k*((Tw-Tp)/dx)*H/(k*DT) = ((Tw-Tp)/dx)*H/DT (STORED NUH at HOT is ((THOT-TEM1)/DWAL)*:HEIGHT:/:TDIF:) (STORED NUC at COLD is ABS((TCOLD-TEM1)/DWAL)*:HEIGHT:/:TDIF:) ** compute overall heat transfer rates to compare with NETT source printout in RESULT file (MAKE1 QHOT is 0.0) (STORE1 QHOT at HOT is SUM(QH*AEAST)) (PRINT Q_HOT is QHOT) (MAKE1 QCOLD is 0.0) (STORE1 QCOLD at COLD is SUM(QC*AEAST)) (PRINT of Q_Cold is QCOLD) ** Compute average Nusselt number (MAKE1 NUAHOT is 0.0) (STORE1 of NUAHOT at HOT is QHOT/(:TDIF:*:COND:)) (PRINT1 of Nu_av_Hot is NUAHOT) (MAKE1 NUACOLD is 0.0) (STORE1 of NUACOLD at COLD is ABS(QCOLD)/(:TDIF:*:COND:)) (PRINT1 of Nu_av_Cold is NUACOLD) ** dimensionless velocities STORE(TNO,U1N,V1N) (STORED OF U1N is U1/:VREF:) (STORED OF V1N is V1/:VREF:) ** dimensionless temperature (STORED of TNO IS (TEM1-:TCOLD:)/:TDIF:) SAVE7END _____________________________________________________________________ GROUP 11. Initialization of variable or porosity fields FIINIT(ENUT)=40.*MU/RHO VBUOY=(-2.*BETA*0.5*TDIF*AGRAV*0.1*HEIGHT)**0.5 VBUOY FIINIT(KE)=(0.1*VBUOY)**2 FIINIT(EP)=0.09*FIINIT(KE)**2/FIINIT(ENUT) IF(TEM1.EQ.TEM1) THEN + HHOT=THOT; HCOLD=TCOLD; HREF=TREF ENDIF FIINIT(TEM1)=0.5*(HHOT+HCOLD) group 13. boundary conditions and special sources 1. Hot wall boundary: Constant Temperature of 65.8 deg C. WALL (HOT,WEST,1,1,1,NY,1,NZ,1,1) COVAL(HOT,TEM1,LOGLAW,HHOT) 2. Cold wall boundary: Constant Temperature of 20 deg C. WALL (COLD,EAST,NX,NX,1,NY,1,NZ,1,1) COVAL(COLD,TEM1,LOGLAW,HCOLD) 3. Top wall boundary: adiabatic but with friction WALL(TOPWAL,NORTH,1,NX,NY,NY,1,NZ,1,1) 4. Bottom wall boundary: adiabatic but with friction WALL(BOTWAL,SOUTH,1,NX,1,1,1,NZ,1,1) 5. Buoyancy force BUOYA=0.;BUOYB=AGRAV;BUOYC=0. PATCH(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,1) IF(BOUSS) THEN + COVAL(BUOY,V1,FIXFLU,BOUSS) + DVO1DT=BETA; BUOYE=HREF ELSE + COVAL(BUOY,V1,FIXFLU,DENSDIFF);BUOYD=RHO ENDIF 6. Reference pressure at the centre of the cavity PATCH(REFP,CELL,NX/2,NX/2,NY/2,NY/2,1,NZ,1,1) COVAL(REFP,P1,FIXP,0.0); COVAL(REFP,V1,ONLYMS,0.0) COVAL(REFP,H1,ONLYMS,SAME) 7. Buoyancy terms in the k-e model SPEDAT(SET,KEBUOY,GCEB,R,1.0) ! C3EB = 1.0 by default ** c3eb<0 means C3EB = tanh(V/U) SPEDAT(SET,KEBUOY,GCEB,R,-1.0) PATCH(KEBUOY,PHASEM,1,NX,1,NY,1,NZ,1,1) COVAL(KEBUOY,KE,KESOURCE,KESOURCE) COVAL(KEBUOY,:TLSC:,KESOURCE,KESOURCE) STORE(GENB,C3EB) ! Output of buoyancy production & C3EB GROUP 16. Termination of iterations LITER(P1)=40 LITER(V1)=2;LITER(U1)=2;LITER(TEM1)=50 LITER(KE)=2;LITER(:TLSC:)=2 GROUP 17. Under-relaxation devices VBUOY=(-BETA*TDIF*AGRAV*HEIGHT)**0.5; TBRUNT=HEIGHT/VBUOY DTF=TBRUNT/NY IF(BOUSS) THEN + RELAX(V1,FALSDT,DTF); RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF*5); RELAX(:TLSC:,FALSDT,DTF) ELSE + RELAX(V1,FALSDT,DTF); RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF) + DENPCO=T ENDIF RELAX(TEM1,FALSDT,50.*DTF) RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF) LSWEEP=8000 GROUP 18. Limits on variables or increments to them VARMIN(TEM1)=HCOLD; VARMAX(TEM1)=HHOT GROUP 22. Spot-value print-out IYMON=NY/2; IXMON=5; NYPRIN=NY/5; NXPRIN=NX/5; NPLT=LSWEEP/20 TSTSWP=-1; ITABL=3 GROUP 23. Field print-out and plot control ** Output Hot & Cold wall Nusselt numbers to .csv file PATCH(NUHOT,PROFIL,1,1,1,NY,1,NZ,1,LSTEP) COVAL(NUHOT,NUH,0.0,0.0) PATCH(NUCOLD,PROFIL,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(NUCOLD,NUC,0.0,0.0) SPEDAT(SET,GXMONI,PLOTALL,L,T) DISTIL=T CASE :CTURB: OF WHEN LB,2 +EX(P1 )=2.086E-01;EX(U1 )=8.015E-03 +EX(V1 )=5.177E-02;EX(KE )=6.196E-04 +EX(EP )=8.658E-04;EX(EPKE)=1.422E+06 +EX(NUC )=8.657E-01;EX(NUH )=7.796E-01 +EX(HTC )=4.602E-02;EX(HTH )=4.668E-02 +EX(QC )=2.108E+00;EX(QH )=2.138E+00 +EX(DWAL)=4.464E-03;EX(ENUL)=1.858E-05 +EX(ENUT)=6.212E-05;EX(KOND)=2.827E-02 +EX(DEN1)=1.073E+00;EX(REYN)=2.763E+01 +EX(LTLS)=4.122E-03;EX(WDIS)=2.636E-02 +EX(TNO )=5.034E-01;EX(TEM1)=3.303E+02 +EX(YPLS)=1.008E-02;EX(V1N )=2.757E-02 +EX(U1N )=4.267E-03;EX(NUC )=4.328E+00 +EX(NUH )=3.898E+00;EX(TREY)=3.357E+00 +EX(C3EB)=6.060E-01;EX(GENB)=2.424E-05 +EX(ENUT)=5.987E-05;EX(TREY)=3.235E+00 EX(LEN1)=4.112E-03 WHEN KWR,3 +EX(P1 )=1.636E-01;EX(U1 )=1.111E-02 +EX(V1 )=6.188E-02;EX(KE )=5.287E-04 +EX(EP )=9.268E-04;EX(NUC )=8.318E-01 +EX(NUH )=7.490E-01;EX(HTC )=4.422E-02 +EX(HTH )=4.485E-02;EX(QC )=2.025E+00 +EX(QH )=2.054E+00;EX(DWAL)=4.464E-03 +EX(YPLS)=1.075E-02;EX(ENUL)=1.857E-05 +EX(ENUT)=4.976E-05;EX(KOND)=2.827E-02 +EX(DEN1)=1.073E+00 +EX(DVDY)=6.471E-01;EX(DVDX)=1.884E+01 +EX(DUDY)=1.084E+00;EX(DUDX)=6.311E-01 +EX(GEN1)=1.566E+03;EX(FBP )=9.833E-01 +EX(XWP )=1.336E-02;EX(OMEG)=1.638E+04 +EX(TNO )=5.023E-01;EX(V1N )=3.295E-02 +EX(U1N )=5.916E-03;EX(TEM1)=3.302E+02 +EX(C3EB)=6.490E-01;EX(GENB)=1.958E-05 +EX(NUC )=4.159E+00;EX(NUH )=3.745E+00 +EX(LEN1)=2.672E-03;EX(TREY)=2.688E+00 +EX(P1 )=1.600E-01;EX(KE )=5.638E-04 +EX(GENB)=2.435E-05;EX(LEN1)=4.097E-03 +EX(ENUT)=6.532E-05;EX(TREY)=3.528E+00 +EX(XWP )=2.916E-02 WHEN KWS,3 +EX(P1 )=2.145E-01;EX(U1 )=9.293E-03 +EX(V1 )=5.816E-02;EX(KE )=3.490E-04 +EX(EP )=7.322E-04;EX(NUC )=8.481E-01 +EX(NUH )=7.638E-01;EX(HTC )=4.508E-02 +EX(HTH )=4.573E-02;EX(QC )=2.065E+00 +EX(QH )=2.095E+00;EX(DWAL)=4.464E-03 +EX(YPLS)=1.020E-02;EX(ENUL)=1.858E-05 +EX(ENUT)=2.441E-05;EX(KOND)=2.827E-02 +EX(DEN1)=1.073E+00;EX(LTLS)=4.122E-03 +EX(WDIS)=2.636E-02;EX(GEN1)=1.706E+03 +EX(BF2 )=9.526E-01;EX(BF1 )=8.270E-01 +EX(OMEG)=1.542E+04;EX(TNO )=5.033E-01 +EX(V1N )=3.097E-02;EX(U1N )=4.948E-03 +EX(TEM1)=3.302E+02;EX(C3EB)=6.160E-01 +EX(GENB)=1.153E-05;EX(NUC )=4.240E+00 +EX(NUH )=3.819E+00;EX(LEN1)=1.616E-03 +EX(TREY)=1.319E+00 ENDCASE STOP