TALK=T;RUN( 1, 1)
PHOTON USE
p;;;;
view z; Gr ou z 1
msg velocity vectors
vec z 1 sh; pause
msg wall-distance contours
con wdis z 1 fi;0.001; Pause
msg effective-viscosity contours
con enut z 1 fi;0.001; Pause
ENDUSE
GROUP 1. RUN TITLE AND OTHER PRELIMINARIES
TEXT(2D Turbulent Free Convection In A Cavity: T219
TITLE
DISPLAY
Turbulent buoyancy-driven air flow in a tall rectangular
cavity of 5:1 aspect ratio with a Rayleigh number of 4.E10 is
calculated using a buoyancy-extended low-Reynolds-number k-e
and k-w models. The vertical walls are isothermal with a
temperature difference of 45.8 degC; the horizontal walls are
adiabatic.
This problem has been studied experimentally by Cheesewright
et al (1986) and numerically by Davidson (1990) and Peng &
Davidson (1999). The primary objective is to compute the
Nusselt number distribution along the hot and cold walls, and
the overall Nusselt number. The calculation may be performed
with or without the Boussinesq approximation, and the dynamic
laminar viscosity is computed from Sutherland's formula. For
the Boussinesq approximation, a uniform density and thermal
conductivity are employed in the simulations.
The main result is the average Nusselt number, and the table
below compares the predicted values with the value deduced
from the measurements:
Data LB KW-R KW-SST
Nu,av 160 154 160 153
All of the models produce good agreement with the measured
value.
ENDDIS
Davidson, L., "Calculation of the turbulent buoyancy-driven
flow in a rectangular cavity using an efficient solver and two
different low-Reynolds number k-e models" Numerical Heat
Transfer, Vol.18, p129-147, (1990).
Peng,S.H. & Davidson,L.,"Computation of turbulent buoyant flows
in enclosures with low-Reynolds-number k-w models", Int.J. Heat
& Fluid Flow, Vol.20, p172-184,(1999).
Cheesewright,R., King,K.J. & Ziai,S., "Experimental data for the
validation of computer codes for the prediction of two-dimensional
buoyant cavity Flows", In: J.A.C. Humphrey, C.T. Avedisian, B.W.
Le Tourneau, M.M. Chen (Eds.), Significant Questions in Buoyancy
Affected Enclosure or Cavity Flows, HTD 60, ASME, p75-81,(1986).
BOOLEAN(BOUSS,KO);KO=F
MESG( Do you want the Boussinesq approximation? (y/N)
READVDU(ANS,CHAR,N)
IF(:ANS:.EQ.Y) THEN
+ BOUSS=T
+ MESG( Boussinesq approximation
ELSE
+ BOUSS=F
+ MESG( Variable density option
ENDIF
REAL(TCOLD,THOT,TDIF,CP,HEIGHT,WIDTH,MU,BETA,TREF,AGRAV)
REAL(HCOLD,HHOT,HREF,DTF,VBUOY,RAY,RHO,TBRUNT,COND,GRAS)
REAL(PRLAM,ENULAM,GRSHOF,VREF)
** Cavity dimensions
HEIGHT=2.5;WIDTH=0.5
** Temperature levels
TCOLD=34.2+273.; TDIF=45.8; THOT=TCOLD+TDIF
TREF=0.5*(THOT+TCOLD)
** Physical properties
CP=1.008E3;BETA=1./TREF; RHO=353.505/TREF;MU=2.0383E-5
ENULAM=MU/RHO
** Enthalpies
HCOLD=CP*TCOLD;HHOT=CP*THOT;HREF=CP*TREF
AGRAV=-9.81
VREF=(-AGRAV*BETA*TDIF*HEIGHT)**0.5
GROUP 2. Transience; time-step specification
GROUP 3. X-direction grid specification
** for a fine mesh use NX=NY=56 and ALF=3.5
NX=56
REAL(ALF,GAM,ALFM);ALF=3.5;ALFM=-ALF
DO JJ=1,NX
+ GAM=ALF*(2.*(JJ/NX)-1.)
+ XFRAC(JJ)=-0.5*TANH(GAM)/TANH(ALFM)+0.5
+ XFRAC(JJ)=XFRAC(JJ)*WIDTH
ENDDO
group 4. y-direction grid specification
NY=56
DO JJ=1,NY
+ GAM=ALF*(2.*(JJ/NY)-1.)
+ YFRAC(JJ)=-0.5*TANH(GAM)/TANH(ALFM)+0.5
+ YFRAC(JJ)=YFRAC(JJ)*HEIGHT
ENDDO
group 7. variables stored, solved & named
SOLVE(P1,U1,V1,TEM1)
REAL(FRIC,TKEIN,UMAX,MIXL,EPSIN)
UMAX=0.4
FRIC=0.001;TKEIN=0.25*UMAX*UMAX*FRIC;MIXL=0.09*WIDTH
CHAR(CTURB,TLSC)
MESG( Enter the required turbulence model:
MESG( LB - Low-Re Lam-Brem. k-e model (default)
MESG( KWR - Wilcox 2008 Low-Re k-w model
MESG( KWS - Low-Re k-w SST model
MESG(
READVDU(CTURB,CHAR,LB)
CASE :CTURB: OF
WHEN LB,2
+ TEXT(2D Turb. Buoyant Cavity Flow K-E:T219
+ MESG(Low-Re Lam-Bem. k-e model
+ KELIN=1;TLSC=EP;KELIN=3
+ TURMOD(KEMODL-LOWRE);STORE(REYN)
WHEN KWR,3
+ TEXT(2D Turb. Buoyant Cavity Flow K-W R:T219
+ KO=T
+ MESG(Wilcox 2008 low-Re k-w model
+ TLSC=OMEG
+ TURMOD(KWMODLR-LOWRE)
+ EPSIN=EPSIN/(0.09*TKEIN)
WHEN KWS,3
+ TEXT(2D Turb. Buoyant Cavity Flow K-W SST:T219
+ KO=T
+ MESG(Menter k-w SST model
+ TURMOD(KWSST-LOWRE)
+ TLSC=OMEG
+ EPSIN=EPSIN/(0.09*TKEIN)
+ FIINIT(BF1)=1.0;FIINIT(BF2)=1.0
+ RELAX(BF1,LINRLX,0.05);RELAX(BF2,LINRLX,1.0)
ENDCASE
STORE(TREY) ! local turbulent Reynolds number
group 8. terms (in differential equations) & devices
TERMS(TEM1,N,P,P,P,P,P)
group 9. properties of the medium (or media)
COND=3.5E-3+7.58E-5*TREF
IF(BOUSS) THEN
+ RHO1=RHO
+ PRNDTL(TEM1)=-KOND
ELSE
+ STORE(DEN1,KOND)
+ FIINIT(DEN1)=RHO; FIINIT(KOND)=COND
+ RHO1=GRND10; RHO1A=0.; RHO1B=1./353.505
+ PRNDTL(TEM1)=-GRND4;PRLH1A=3.5E-3;PRLH1B=7.5E-5
ENDIF
CP1 =CP
ENUL=SUTHLAND;ENULA=1.458E-6;ENULB=110.4
PRT(TEM1)=0.9
PRLAM=MU*CP/COND
PRLAM
GRSHOF=-AGRAV*BETA*HEIGHT**3*TDIF/(ENULAM)**2
GRSHOF
RAY=GRSHOF*PRLAM
RAY
BETA
COND
STORE(ENUT,ENUL,YPLS,LEN1)
STORE(DWAL,QH,QC,HTH,HTC,NUH,NUC)
__________________________________________________________________
SAVE7BEGIN
(STORED of DWAL is 0.5*DXU)
** wall heat flux in W/m^2
(STORED QH at HOT is KOND*(THOT-TEM1)/DWAL)
(STORED QC at COLD is KOND*(TCOLD-TEM1)/DWAL)
** local heat transfer coefficient
(STORED HTH at HOT is QH/TDIF)
(STORED HTC at COLD is QC/TDIF)
** Local Nusselt number
Nu = h_loc*H/k = (q_loc/DT)*H/k = k*((Tw-Tp)/dx)*H/(k*DT)
= ((Tw-Tp)/dx)*H/DT
(STORED NUH at HOT is ((THOT-TEM1)/DWAL)*:HEIGHT:/:TDIF:)
(STORED NUC at COLD is ABS((TCOLD-TEM1)/DWAL)*:HEIGHT:/:TDIF:)
** compute overall heat transfer rates to compare
with NETT source printout in RESULT file
(MAKE1 QHOT is 0.0)
(STORE1 QHOT at HOT is SUM(QH*AEAST))
(PRINT Q_HOT is QHOT)
(MAKE1 QCOLD is 0.0)
(STORE1 QCOLD at COLD is SUM(QC*AEAST))
(PRINT of Q_Cold is QCOLD)
** Compute average Nusselt number
(MAKE1 NUAHOT is 0.0)
(STORE1 of NUAHOT at HOT is QHOT/(:TDIF:*:COND:))
(PRINT1 of Nu_av_Hot is NUAHOT)
(MAKE1 NUACOLD is 0.0)
(STORE1 of NUACOLD at COLD is ABS(QCOLD)/(:TDIF:*:COND:))
(PRINT1 of Nu_av_Cold is NUACOLD)
** dimensionless velocities
STORE(TNO,U1N,V1N)
(STORED OF U1N is U1/:VREF:)
(STORED OF V1N is V1/:VREF:)
** dimensionless temperature
(STORED of TNO IS (TEM1-:TCOLD:)/:TDIF:)
SAVE7END
_____________________________________________________________________
GROUP 11. Initialization of variable or porosity fields
FIINIT(ENUT)=40.*MU/RHO
VBUOY=(-2.*BETA*0.5*TDIF*AGRAV*0.1*HEIGHT)**0.5
VBUOY
FIINIT(KE)=(0.1*VBUOY)**2
FIINIT(EP)=0.09*FIINIT(KE)**2/FIINIT(ENUT)
IF(TEM1.EQ.TEM1) THEN
+ HHOT=THOT; HCOLD=TCOLD; HREF=TREF
ENDIF
FIINIT(TEM1)=0.5*(HHOT+HCOLD)
group 13. boundary conditions and special sources
1. Hot wall boundary: Constant Temperature of 65.8 deg C.
WALL (HOT,WEST,1,1,1,NY,1,NZ,1,1)
COVAL(HOT,TEM1,LOGLAW,HHOT)
2. Cold wall boundary: Constant Temperature of 20 deg C.
WALL (COLD,EAST,NX,NX,1,NY,1,NZ,1,1)
COVAL(COLD,TEM1,LOGLAW,HCOLD)
3. Top wall boundary: adiabatic but with friction
WALL(TOPWAL,NORTH,1,NX,NY,NY,1,NZ,1,1)
4. Bottom wall boundary: adiabatic but with friction
WALL(BOTWAL,SOUTH,1,NX,1,1,1,NZ,1,1)
5. Buoyancy force
BUOYA=0.;BUOYB=AGRAV;BUOYC=0.
PATCH(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,1)
IF(BOUSS) THEN
+ COVAL(BUOY,V1,FIXFLU,BOUSS)
+ DVO1DT=BETA; BUOYE=HREF
ELSE
+ COVAL(BUOY,V1,FIXFLU,DENSDIFF);BUOYD=RHO
ENDIF
6. Reference pressure at the centre of the cavity
PATCH(REFP,CELL,NX/2,NX/2,NY/2,NY/2,1,NZ,1,1)
COVAL(REFP,P1,FIXP,0.0); COVAL(REFP,V1,ONLYMS,0.0)
COVAL(REFP,H1,ONLYMS,SAME)
7. Buoyancy terms in the k-e model
SPEDAT(SET,KEBUOY,GCEB,R,1.0) ! C3EB = 1.0 by default
** c3eb<0 means C3EB = tanh(V/U)
SPEDAT(SET,KEBUOY,GCEB,R,-1.0)
PATCH(KEBUOY,PHASEM,1,NX,1,NY,1,NZ,1,1)
COVAL(KEBUOY,KE,KESOURCE,KESOURCE)
COVAL(KEBUOY,:TLSC:,KESOURCE,KESOURCE)
STORE(GENB,C3EB) ! Output of buoyancy production & C3EB
GROUP 16. Termination of iterations
LITER(P1)=40
LITER(V1)=2;LITER(U1)=2;LITER(TEM1)=50
LITER(KE)=2;LITER(:TLSC:)=2
GROUP 17. Under-relaxation devices
VBUOY=(-BETA*TDIF*AGRAV*HEIGHT)**0.5; TBRUNT=HEIGHT/VBUOY
DTF=TBRUNT/NY
IF(BOUSS) THEN
+ RELAX(V1,FALSDT,DTF); RELAX(U1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF*5); RELAX(:TLSC:,FALSDT,DTF)
ELSE
+ RELAX(V1,FALSDT,DTF); RELAX(U1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF)
+ DENPCO=T
ENDIF
RELAX(TEM1,FALSDT,50.*DTF)
RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF)
LSWEEP=8000
GROUP 18. Limits on variables or increments to them
VARMIN(TEM1)=HCOLD; VARMAX(TEM1)=HHOT
GROUP 22. Spot-value print-out
IYMON=NY/2; IXMON=5; NYPRIN=NY/5; NXPRIN=NX/5; NPLT=LSWEEP/20
TSTSWP=-1; ITABL=3
GROUP 23. Field print-out and plot control
** Output Hot & Cold wall Nusselt numbers to .csv file
PATCH(NUHOT,PROFIL,1,1,1,NY,1,NZ,1,LSTEP)
COVAL(NUHOT,NUH,0.0,0.0)
PATCH(NUCOLD,PROFIL,NX,NX,1,NY,1,NZ,1,LSTEP)
COVAL(NUCOLD,NUC,0.0,0.0)
SPEDAT(SET,GXMONI,PLOTALL,L,T)
DISTIL=T
CASE :CTURB: OF
WHEN LB,2
+EX(P1 )=2.086E-01;EX(U1 )=8.015E-03
+EX(V1 )=5.177E-02;EX(KE )=6.196E-04
+EX(EP )=8.658E-04;EX(EPKE)=1.422E+06
+EX(NUC )=8.657E-01;EX(NUH )=7.796E-01
+EX(HTC )=4.602E-02;EX(HTH )=4.668E-02
+EX(QC )=2.108E+00;EX(QH )=2.138E+00
+EX(DWAL)=4.464E-03;EX(ENUL)=1.858E-05
+EX(ENUT)=6.212E-05;EX(KOND)=2.827E-02
+EX(DEN1)=1.073E+00;EX(REYN)=2.763E+01
+EX(LTLS)=4.122E-03;EX(WDIS)=2.636E-02
+EX(TNO )=5.034E-01;EX(TEM1)=3.303E+02
+EX(YPLS)=1.008E-02;EX(V1N )=2.757E-02
+EX(U1N )=4.267E-03;EX(NUC )=4.328E+00
+EX(NUH )=3.898E+00;EX(TREY)=3.357E+00
+EX(C3EB)=6.060E-01;EX(GENB)=2.424E-05
+EX(ENUT)=5.987E-05;EX(TREY)=3.235E+00
EX(LEN1)=4.112E-03
WHEN KWR,3
+EX(P1 )=1.636E-01;EX(U1 )=1.111E-02
+EX(V1 )=6.188E-02;EX(KE )=5.287E-04
+EX(EP )=9.268E-04;EX(NUC )=8.318E-01
+EX(NUH )=7.490E-01;EX(HTC )=4.422E-02
+EX(HTH )=4.485E-02;EX(QC )=2.025E+00
+EX(QH )=2.054E+00;EX(DWAL)=4.464E-03
+EX(YPLS)=1.075E-02;EX(ENUL)=1.857E-05
+EX(ENUT)=4.976E-05;EX(KOND)=2.827E-02
+EX(DEN1)=1.073E+00
+EX(DVDY)=6.471E-01;EX(DVDX)=1.884E+01
+EX(DUDY)=1.084E+00;EX(DUDX)=6.311E-01
+EX(GEN1)=1.566E+03;EX(FBP )=9.833E-01
+EX(XWP )=1.336E-02;EX(OMEG)=1.638E+04
+EX(TNO )=5.023E-01;EX(V1N )=3.295E-02
+EX(U1N )=5.916E-03;EX(TEM1)=3.302E+02
+EX(C3EB)=6.490E-01;EX(GENB)=1.958E-05
+EX(NUC )=4.159E+00;EX(NUH )=3.745E+00
+EX(LEN1)=2.672E-03;EX(TREY)=2.688E+00
+EX(P1 )=1.600E-01;EX(KE )=5.638E-04
+EX(GENB)=2.435E-05;EX(LEN1)=4.097E-03
+EX(ENUT)=6.532E-05;EX(TREY)=3.528E+00
+EX(XWP )=2.916E-02
WHEN KWS,3
+EX(P1 )=2.145E-01;EX(U1 )=9.293E-03
+EX(V1 )=5.816E-02;EX(KE )=3.490E-04
+EX(EP )=7.322E-04;EX(NUC )=8.481E-01
+EX(NUH )=7.638E-01;EX(HTC )=4.508E-02
+EX(HTH )=4.573E-02;EX(QC )=2.065E+00
+EX(QH )=2.095E+00;EX(DWAL)=4.464E-03
+EX(YPLS)=1.020E-02;EX(ENUL)=1.858E-05
+EX(ENUT)=2.441E-05;EX(KOND)=2.827E-02
+EX(DEN1)=1.073E+00;EX(LTLS)=4.122E-03
+EX(WDIS)=2.636E-02;EX(GEN1)=1.706E+03
+EX(BF2 )=9.526E-01;EX(BF1 )=8.270E-01
+EX(OMEG)=1.542E+04;EX(TNO )=5.033E-01
+EX(V1N )=3.097E-02;EX(U1N )=4.948E-03
+EX(TEM1)=3.302E+02;EX(C3EB)=6.160E-01
+EX(GENB)=1.153E-05;EX(NUC )=4.240E+00
+EX(NUH )=3.819E+00;EX(LEN1)=1.616E-03
+EX(TREY)=1.319E+00
ENDCASE
STOP