GROUP 1. Run title and other preliminaries TEXT(LAM-BRE_2D Y-Z NOPOR CHANNEL TEST :T215 TITLE DISPLAY This case provides a test of the Lam-Bremhorst low-Reynolds number k-e model for 2d steady developing flow in a channel. As a test of symmetry both halves of the channel are considered in the y-z plane. In addition the temperature equation is solved via the TEM1 variable with a uniformly- distributed heat flux applied to the fluid at each wall. The case acts as a benchmark calculation against which may be compared calculations of the same case involving blockages represented via "conjugate heat transfer" or "porosities". A relatively coarse grid is used so as to permit convergence in about 400 sweeps. The problem has been set up to perform 30 sweeps only, so as to reduce execution times in performing routine testing procedures. ENDDIS REAL(REY,RHOIN,WIN,HGHT,DHYDR,REYH,FRIC,US,TKEIN,EPIN,TIN) HGHT=0.1; REY=1.E5;WIN=10.0;DHYDR=2.*HGHT; REYH=2.*REY;TIN=300. FRIC=1./(1.82*LOG10(REYH)-1.64)**2;US=WIN*(FRIC/8.)**0.5 ENUL=WIN*HGHT/REY GROUP 3. X-DIRECTION GRID SPECIFICATION GROUP 4. Y-DIRECTION GRID SPECIFICATION REAL(LENGTH,DELT1,DELY,KFAC,AA) ** define first dely from wall and the grid-expansion factor Kfac which defines a constant ratio of lengths of two adjacent cells. DELT1=0.5*ENUL/US;KFAC=1.8;DELY=DELT1/(0.5*HGHT) ** calculate NY from dely & Kfac INTEGER(NY2,JJM,JJJ) AA=(0.5/DELY)*(KFAC-1.0)+1.0 AA=LOG(AA)/LOG(KFAC)+1.0001 NY2=AA;NY=2*NY2 ** define uniform grid initially IREGY=1;GRDPWR(Y,NY,YVLAST,1.0) ** compute expanding grid from south boundary over one half of the channel width YFRAC(1)=DELY DO JJ=2,NY2 + JJM=JJ-1 + DELY=KFAC*DELY + YFRAC(JJ)=YFRAC(JJM)+DELY ENDDO YFRAC(NY2)=0.5 ** create symmetrical grid in the second half of the channel JJJ=0 DO JJ=NY-1,NY2+1,-1 + JJJ=JJJ+1 + YFRAC(JJ)=1.-YFRAC(JJJ) ENDDO YFRAC(NY)=1.0;YVLAST=HGHT GROUP 5. Z-direction grid specification LENGTH=5.*HGHT;NZ=10;GRDPWR(Z,NZ,LENGTH,1.0) GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,TEM1);SOLUTN(P1,Y,Y,Y,P,P,P) SOLUTN(TEM1,Y,Y,Y,P,P,P);STORE(PRPS) TURMOD(KEMODL-LOWRE);STORE(ENUT);KELIN=1 ** use harmonic-averaging to permit comparison with a "conjugate-heat-transfer" calculation SOLUTN(V1,Y,Y,P,P,P,Y);SOLUTN(W1,Y,Y,P,P,P,Y) SOLUTN(KE,Y,Y,P,P,P,Y);SOLUTN(EP,Y,Y,P,P,P,Y) SOLUTN(TEM1,P,P,P,P,P,Y) GROUP 8. TERMS (IN DIFFERENTIAL EQUATIONS) & DEVICES GROUP 9. PROPERTIES OF THE MEDIUM (OR MEDIA) PRNDTL(TEM1)=CONDFILE; GROUP 11. INITIALIZATION OF VARIABLE OR POROSITY FIELDS FIINIT(P1)=1.E-3;FIINIT(W1)=WIN;TKEIN=2.*US**2 EPIN=0.1643*TKEIN**1.5/(0.1*0.5*HGHT) FIINIT(KE)=TKEIN;FIINIT(EP)=EPIN;FIINIT(W1)=WIN;FIINIT(TEM1)=TIN GROUP 13. BOUNDARY CONDITIONS AND SPECIAL SOURCES ** air inflow boundary PATCH(INLET,LOW,1,NX,1,NY,1,1,1,1) COVAL(INLET,P1,FIXFLU,RHO1*WIN);COVAL(INLET,W1,ONLYMS,WIN) COVAL(INLET,KE,ONLYMS,TKEIN);COVAL(INLET,EP,ONLYMS,EPIN) COVAL(INLET,TEM1,ONLYMS,TIN) ** outflow boundary PATCH(OUTL,HIGH,1,1,1,NY,NZ,NZ,1,1) COVAL(OUTL,P1,1.E3,0.0);COVAL(OUTL,W1,ONLYMS,0.0) COVAL(OUTL,KE,ONLYMS,0.0);COVAL(OUTL,EP,ONLYMS,0.0) COVAL(OUTL,TEM1,ONLYMS,SAME);COVAL(OUTL,V1,ONLYMS,0.0) ** wall boundaries; prescribed heat flux at both walls PATCH(WALLN,NWALL,1,1,NY,NY,1,NZ,1,1) COVAL(WALLN,KE,1.0,0.0);COVAL(WALLN,W1,LOGLAW,0.0) COVAL(WALLN,TEM1,FIXFLU,0.5E3/LENGTH);COVAL(WALLN,LTLS,1.0,0.) PATCH(WALLS,SWALL,1,1,1,1,1,NZ,1,1) COVAL(WALLS,KE,1.0,0.0);COVAL(WALLS,W1,LOGLAW,0.0) COVAL(WALLS,TEM1,FIXFLU,0.5E3/LENGTH);COVAL(WALLS,LTLS,1.0,0.) GROUP 15. TERMINATION OF SWEEPS RESREF(P1)=1.E-12*WIN*HGHT RESREF(W1)=RESREF(P1)*WIN*RHO1; RESREF(V1)=RESREF(W1) RESREF(KE)=RESREF(P1)*RHO1*TKEIN; RESREF(EP)=RESREF(P1)*RHO1*EPIN RESREF(TEM1)=RESREF(P1)*RHO1*TIN*1.E3 GROUP 17. Under-relaxation devices RELAX(P1,LINRLX,1.0); REAL(DTF);DTF=5.*ZWLAST/WIN/NZ RELAX(V1,FALSDT,DTF); RELAX(W1,FALSDT,DTF) RELAX(KE,FALSDT,DTF); RELAX(EP,FALSDT,DTF) GROUP 22. Monitor print-out IZMON=NZ/2;IYMON=NY;ITABL=3;NPLT=5 GROUP 24. DUMPS FOR RESTARTS ** activate printout of near-wall y+ values YPLS=T;LSWEEP=30;NPRINT=LSWEEP;NYPRIN=1;NZPRIN=1;TSTSWP=-1 ** Define fluid properties via Q1 FIINIT(PRPS)=34 ** mat no. rho enul cp kond expan ** 1 air CSG10=Q1 MATFLG=T;NMAT=1 34 1. 1.E-5 1.E3 0.01 0