TALK=T;RUN( 1, 1) ** LOAD(x213) from the x Input Library ** PHOENICS VALIDATION CASE TEXT(CHEN-KIM_2D ABRUPT PIPE EXPANS :T213 TITLE DISPLAY The problem considered is the calculation of incompressible turbulent flow and heat transfer in a sudden pipe expansion with a diameter ratio Do/Di=2.5. The Reynolds number of the larger pipe is 4.075E4, and the laminar Prandtl number is 0.7. Downstream of the expansion, the fluid is heated by a uniform heat flux through the outer wall. This case was studied experimentally by Baugh et al [1984] to determine the local Nusselt number distributions for various Reynolds numbers. Following the expansion, the flow enters the larger pipe in the form of a circular jet, and then separates from the expansion corner to generate to a primary recirculation zone, whose reverse flow is driven by the adverse pressure gradient associated with the expansion geometry. At the point of reattachment, the heat transfer coefficients (htc) are known to be several times greater than the corresponding fully-developed values. For this case, the measurements show that the peak htc downstream of the expansion is roughly 4 times the fully-developed htc for the same Reynolds number. These high htcs occur in the region of the reattachment of the shear layer to the tube wall. The calculations are started at z= -4h and terminated at z=41h, where a fixed-pressure boundary condition is applied. Here, h is the step height given by h=0.5*(Do-Di).The calculation may be performed with one of the following low-Re turbulence models: the Lam-Bremhorst, Chen-Kim k-e & 2-Layer k-e models; the Wilcox 1988 & 2008 k-w models; and the Menter & SST k-w models. The turbulent Prandtl number is taken as 0.86. The numerical integration is taken right down to the wall, and a non-uniform mesh of NY=110 by NX=200 is used which concentrates grid cells close to the wall. Typically, about 5000 sweeps are required for a converged solution with this mesh density. ENDDIS For simplicity, uniform profiles of w, T, k and e (or w) are specified at the inlet to the calculation domain. The main results of the simulations are compared with the measured values below: LB CK 2L k-w k-w-R k-w-M k-w-SST Data Xr/H = 8.4 11.0 10.6 11.0 17.0 10.7 12.5 10.0 Nu/NuDB,max = 16.8 15.7 3.1 3.5 2.8 3.7 3.4 4.2 Computations made using the LB and CK low-Re k-e models predict rates of heat transfer that are too high by up to a factor of 4 as a result of too large predicted levels of near-wall length scale. The other models fare much better, but these solutions need to be checked for grid dependency. It is evident that the computed levels of the local htc are especially sensitive to the near-wall model. Baughn, J. W., Hoffman, M. A., Takahashi, R. and Launder, B. E., "Local Heat Transfer Downstream of an Abrupt Expansion in a Circular Channel With Constant Wall Heat Flux", ASME Journal of Heat Transfer, Vol. 106, 1984, pp.789-786. Zemanick, P. P., and Dougall, R. S., "Local Heat Transfer Downstream of Abrupt Circular Channel Expansion," ASME Journal of Heat Transfer, Vol. 92, 1970, p. 53. This AUTOPLOT sequence provides a plot of the axial velocity W1 along the outer surface of the solution domain versus normalised axial distance Z. The axial coordinate 0.0 corresponds to the step location. The reattachment point corresponds the axial location where W1 changes from negative to positive. AUTOPLOT USE file phida 3 da 1 w1 y m shift x -1.2 1 divide x .3 1 col9 1 level y 0;level x 0 scale x 0 40 msg Velocity (W1) profile pause cl da 1 ypls y m shift x -1.2 1 divide x .3 1 col3 1 level y 0;level x 0 scale x 0 40 pause cl da 1 ypls y 50 divide x .3 1 col3 1 level y 0;level x 0 scale x 0 5 pause cl da 1 nuss y m shift x -1.2 1 divide x .3 1 plot 1 level y 0;level x 0 scale x 0 40 pause cl da 1 nusc y m shift x -1.2 1 divide x .3 1 plot 1 level y 0;level x 0 scale x 0 40 msg Press e to END ENDUSE BOOLEAN(KWMOD);KWMOD=F CHAR(CTURB,TLSC);INTEGER(TMODEL,NYS,NYS2,NZS,NZS2,NZS3,NZS4) REAL(HGHT,DIAMI,DIAMO,PL_UP,REYDO,GRADI,RADO,TIN,PLDOWN) REAL(PLD_S1,PLD_S2,PLD_S3,REYDI,NUZD,NUZDS,CP_BC,PIND) REAL(PLEN,WIN,WOUT,TKEIN,EPSIN,VFLOW,AIN,QIN,AREAO,RHOIN) REAL(PRLAM,EXRAT,MFLOW,SPHEAT,QWALL,DTRISE,NUDB,DRAT) REAL(FRIC,WSTAR,KEMAX,EPMAX,ENUTIN,OMEGIN) ** Reynolds number, Prandtl number, Expansion Ratio REYDO=4.075E4 PRLAM=0.7;EXRAT=2.5 REYDO;PRLAM RHOIN=1.0 ! uniform density ** Calculation of domain specifications DIAMO=1.0;DIAMI=DIAMO/EXRAT;WIN=10.0 DRAT=DIAMI/DIAMO WOUT=WIN*(DRAT)**2 ENUL=(WOUT*DIAMO)/REYDO RADO=0.5*DIAMO;GRADI=0.5*DIAMI;HGHT=RADO-GRADI DRAT;ENUL;WIN;WOUT;DIAMO;HGHT ** PLEN is the total pipe length PL_UP =4.*HGHT PLD_S1=HGHT PLD_S2=15*HGHT PLD_S3=25*HGHT PLDOWN=PLD_S1+PLD_S2+PLD_S3 PLEN=PL_UP+PLDOWN PL_UP;PLEN;PLDOWN ** Inlet Reynolds number REYDI=WIN*DIAMI/ENUL REYDI ** Estimate friction velocity FRIC=1./(1.82*LOG10(REYDI)-1.64)**2;WSTAR=WIN*(FRIC/8.)**0.5 FRIC;WSTAR ** Inlet turbulence values TKEIN=0.25*WIN*WIN*FRIC;EPSIN=0.1643*TKEIN**1.5/(0.09*GRADI) ENUTIN=0.09*TKEIN*TKEIN/EPSIN;OMEGIN=EPSIN/(0.09*TKEIN) TKEIN;EPSIN;ENUTIN;OMEGIN ** Inlet temperature TIN=20. ** Nusselt number for fully-developed pipe flow (Dittus Boelter) NUDB=0.023*(REYDO**0.8)*(PRLAM**0.4) NUDB ** Zemanick & Dougall (1970) Nu,max correlation NUZD=0.2*REYDI**(2./3.);NUZDS=NUZD/NUDB NUZDS ** Inlet temperature TIN=20. ** Borda-Carnot Pressure coefficient - maximum pressure rise in the absence of any wall friction CP_BC=2.*(DRAT**2)*(1.-DRAT**2) CP_BC ** dimensionless total-pressure loss due to pipe expansion is DP,LOSS= (1.-DRAT**2)**2 ** Inlet Dynamic pressure PIND=0.5*RHOIN*WIN*WIN ** pressure coefficient (STORED of CP is (P1-P1[1,1,1])/PIND with IMAT<100) ** temperature difference (STORED of TDIF is (TEM1-:TIN:) with IMAT<100) GROUP 3. X-direction grid specification CARTES=F;XULAST=0.1 ** inlet flow area and volume flow rate AIN=DIAMI*DIAMI*XULAST/8.;VFLOW=WIN*AIN GROUP 4. Y-direction grid specification GROUP 5. Z-direction grid specification NYS=50;NYS2=60 NREGY=2 ** -ve no.of cells means symmetric IREGY=1;GRDPWR(Y,NYS,-GRADI,-1.08) IREGY=2;GRDPWR(Y,-NYS2,-HGHT,1.10) ** -ve distance means Geometric Progression NZS=45;NZS2=35;NZS3=80;NZS4=40 NREGZ=4 IREGZ=1;GRDPWR(Z,NZS,-PL_UP,-1.05) IREGZ=2;GRDPWR(Z,NZS2,-PLD_S1,1.06) IREGZ=3;GRDPWR(Z,NZS3,-PLD_S2,1.015) IREGZ=4;GRDPWR(Z,NZS4,-PLD_S3,1.02) GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named SOLVE(P1,W1,V1,TEM1);SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(W1,P,P,P,P,P,N);SOLUTN(V1,P,P,P,P,P,N) SOLUTN(TEM1,Y,Y,Y,N,N,N);STORE(ENUT) STORE(TDIF,CP) MESG( Enter the required turbulence model: MESG( LB - Low-Re Lam-Brem. k-e model MESG( CK - Low-Re Lam-Brem. k-e model MESG( 2L - Low-Re 2-layer k-e model MESG( KW - Wilcox 1988 Low-Re k-w model MESG( KWR - Wilcox 2008 Low-Re k-w model MESG( KWM - Menter Low-Re k-w model MESG( KWS - Low-Re k-w SST model (default) MESG( READVDU(CTURB,CHAR,KWS) CTURB CASE :CTURB: OF WHEN LB,2 + TEXT(LAM-BRE K-E_2D ABRUPT PIPE EXPANS :T213 + MESG(Low-Re Lam-Bem. k-e model + TMODEL=1;KELIN=1;TLSC=EP + TURMOD(KEMODL-LOWRE);STORE(REYN) + SOLUTN(V1,Y,Y,Y,P,P,P);SOLUTN(W1,Y,Y,Y,P,P,P) WHEN CK,2 + TEXT(CHEN-KIM_2D ABRUPT PIPE EXPANS :T213 + MESG(Low-Re Chen-Kim k-e model + TMODEL=2;KELIN=1;TLSC=EP + TURMOD(KECHEN-LOWRE);STORE(REYN) + SOLUTN(V1,Y,Y,Y,P,P,P);SOLUTN(W1,Y,Y,Y,P,P,P) WHEN 2L,2 + TEXT(2-LAYER K-E_2D ABRUPT PIPE EXPANS :T213 + MESG(Low-Re 2-layer k-e model + TMODEL=3;KELIN=1;TLSC=EP + TURMOD(KEMODL-2L);STORE(REYN) WHEN KW,2 + TEXT(Wilcox 1988 k-w_2D ABRUPT PIPE EXPANS :T213 + MESG(Wilcox 1988 low-Re k-w model + TMODEL=4;TLSC=OMEG;KWMOD=T + TURMOD(KWMODL-LOWRE);STORE(REYT) WHEN KWR,3 + TEXT(Wilcox 2008 k-w_2D ABRUPT PIPE EXPANS :T213 + MESG(Wilcox 2008 low-Re k-w model + TMODEL=5;TLSC=OMEG;KWMOD=T + TURMOD(KWMODLR-LOWRE);FIINIT(FBP)=1.0 WHEN KWM,3 TEXT(Menter k-w_2D ABRUPT PIPE EXPANS :T213 + MESG(Menter 1992 k-w model + TURMOD(KWMENTER-LOWRE) + TMODEL=6;TLSC=OMEG;KWMOD=T + FIINIT(BF1)=1.0 WHEN KWS,3 TEXT(SST k-w__2D ABRUPT PIPE EXPANS :T213 + MESG(Menter k-w SST model + TURMOD(KWSST-LOWRE) + SOLUTN(V1,Y,Y,Y,P,P,P);SOLUTN(W1,Y,Y,Y,P,P,P) + TMODEL=7;TLSC=OMEG;KWMOD=T + FIINIT(BF1)=1.0;FIINIT(BF2)=1.0 + RELAX(BF1,LINRLX,0.05);RELAX(BF2,LINRLX,1.0) ENDCASE STORE(YPLS,STRS,KOND,ENUL,SPH1,SKIN,LEN1) ** Properties RHO1=RHOIN;ENUL=(WOUT*DIAMO)/REYDO SPHEAT=1.E3; CP1=SPHEAT ** Mass inflow rate MFLOW = RHO1*VFLOW ** Heat input; set Qin to raise temperature from 0 to 1. DTRISE=1.0 QIN=MFLOW*SPHEAT*DTRISE ** surface heat transfer area downstream of pipe expansion AREAO=XULAST*RADO*PLDOWN QWALL=QIN/AREAO Nusselt Number ** CNH1 = mass flow rate through high face of a cell ** Set CNH1 at NZ to CNH1 at NZ-1 (STORED of CNH1 is CNH1[,,-1] with if(IZ.EQ.NZ)) ** Declaration of auxiliary In-Form variables: TSUM and ASUM (MAKE TSUM is 0.) (MAKE ASUM is 0.) PATCH(PATCH1,CELL,1,NX,1,NY,1,NZ,1,LSTEP) ! One PATCH per domain ** Sum mass flow rate*specific heat for each IZ slab (STORE1 ASUM at PATCH1 is SSUM(CNH1*CP1)!IMAT<100) ** Sum energy flux for each IZ slab (STORE1 TSUM at PATCH1 is SSUM(CNH1*CP1*TEM1)!IMAT<100) ** Bulk temperature for each IZ slab (STORED TAVE at PATCH1 is TSUM/ASUM) ** Compute wall temperature (STORED TWAL at HEATIN is TEM1+:QWALL:*0.5*DYV/KOND) ** Heat transfer coefficient in (W/m^2.degC) (STORED HTCB at HEATIN is :QWALL:/(TWAL-TAVE+TINY)) ** Nusselt number (STORED NUSS at HEATIN is (HTCB*:DIAMO:/KOND)) ** Scaled Nusselt number (STORED NUSC at HEATIN is NUSS/:NUDB:) GROUP 8. Terms (in differential equations) & devices TERMS(TEM1,N,P,P,P,P,P) GROUP 9. Properties of the medium (or media) PRT(TEM1)=0.86;PRNDTL(TEM1)=PRLAM GROUP 11. Initialization of variable or porosity fields STORE(PRPS) PATCH(STEP,INIVAL,1,NX,(NYS+1),NY,1,NZS,1,1) INIT(STEP,PRPS,0.,198) EGWF=T ** Initial values FIINIT(W1)=WIN;FIINIT(V1)=0.0;FIINIT(P1)=1.3E-4 FIINIT(KE)=TKEIN;FIINIT(TEM1)=TIN IF(KWMOD) THEN + FIINIT(OMEG)=OMEGIN ELSE + FIINIT(EP)=EPSIN ENDIF GROUP 13. Boundary conditions and special sources ** Inlet INLET(INLET,LOW,1,NX,1,NYS,1,1,1,1);VALUE(INLET,P1,RHO1*WIN) VALUE(INLET,W1,WIN);VALUE(INLET,KE,TKEIN);VALUE(INLET,TEM1,TIN) IF(KWMOD) THEN +VALUE(INLET,OMEG,OMEGIN) ELSE +VALUE(INLET,EP,EPSIN) ENDIF ** Exit PATCH(OUTLET,HIGH,1,NX,1,NY,NZ,NZ,1,1);COVAL(OUTLET,P1,1.0E5,0.0) COVAL(OUTLET,TEM1,ONLYMS,SAME) ** N-wall WALL(WFUNNORT,NORTH,1,NX,NY,NY,NZS+1,NZ,1,1) PATCH(HEATIN,NORTH,1,NX,NY,NY,NZS+1,NZ,1,1) COVAL(HEATIN,TEM1,FIXFLU,QWALL) GROUP 15. Termination of sweeps LSWEEP=5000;TSTSWP=-1 GROUP 17. Under-relaxation devices REAL(DTF,DTFKE);DTF=0.5*ZWLAST/NZ/WIN RELAX(P1,LINRLX,1.0); RELAX(W1,FALSDT,DTF); RELAX(V1,FALSDT,DTF) IF(KWMOD) THEN + RELAX(W1,FALSDT,DTF); RELAX(V1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF/4.); RELAX(:TLSC:,FALSDT,DTF/4.) ** optional output of OMEG residuals and corrections (STORED OF OMCR is CORR(OMEG) with IMAT<100) (STORED OF OMRS is RESI(OMEG) with IMAT<100) ELSE + KELIN=1 + RELAX(KE,FALSDT,DTF/10.); RELAX(:TLSC:,FALSDT,DTF/10.) ** limit turbulence levels produced during course of convergence to prevent divergence of LB & CK k-e models + KEMAX=(2.*WOUT)**2;EPMAX=WSTAR**4/ENUL + VARMAX(KE)=KEMAX;VARMAX(EP)=3.*EPMAX ** optional output of EP residuals and corrections (STORED OF EPCR is CORR(EP) with IMAT<100) (STORED OF EPRS is RESI(EP) with IMAT<100) ENDIF RELAX(TEM1,FALSDT,1.0) GROUP 18. Limits on variables or increments to them LITER(P1)=50;LITER(TEM1)=50 VARMAX(TEM1)=1.E9;VARMIN(TEM1)=TIN-1.0;VARMIN(ENUT)=1.E-10 VARMAX(V1)=5.*WIN;VARMIN(V1)=-5.*WIN VARMAX(W1)=5.*WIN;VARMIN(W1)=-5.*WIN GROUP 21. Print-out of variables GROUP 22. Monitor print-out IZMON=NZS+2;IPLTL=2000;IYMON=NYS+2 ITABL=3;NPLT=50;NPRMON=10000;WALPRN=F GROUP 23. Field print-out and plot control OUTPUT(ENUT,P,P,P,P,Y,Y) ** Output Hot & Cold wall Nusselt numbers to .csv file PATCH(NUWALL,PROFIL,1,NX,NY,NY,NZS+1,NZ,1,LSTEP) COVAL(NUWALL,NUSS,0.0,0.0);COVAL(NUWALL,NUSC,0.0,0.0) COVAL(NUWALL,YPLS,0.0,0.0) ** Activate all 3 convergence history plots SPEDAT(SET,GXMONI,PLOTALL,L,T) DISTIL=T CASE :CTURB: OF WHEN LB,2 +EX(P1 )=6.138E+00;EX(V1 )=6.578E-02 +EX(W1 )=3.452E+00;EX(KE )=1.237E+00 +EX(PRPS)=8.773E-01;EX(NUSC)=4.514E-02 +EX(NUSS)=4.390E+00;EX(HTCB)=2.462E-01 +EX(TWAL)=1.564E-01;EX(TAVE)=1.775E+01 +EX(CNH1)=2.008E-04;EX(SPH1)=8.773E+02 +EX(ENUL)=3.445E-05;EX(KOND)=4.921E-02 +EX(STRS)=9.007E-04 +EX(REYN)=3.802E+03;EX(LTLS)=2.731E-02 +EX(WDIS)=1.313E-01;EX(ENUT)=2.121E-02 +EX(TEM1)=1.792E+01;EX(EPRS)=7.718E-07 +EX(EPCR)=5.023E-05;EX(EP )=2.182E+01 +EX(EPRS)=7.105E-07;EX(EPCR)=4.402E-05 +EX(LEN1)=3.899E-02 +EX(SKIN)=1.806E-01;EX(YPLS)=2.282E-02 +EX(TDIF)=3.882E-01;EX(CP )=1.003E-01 WHEN CK,2 +EX(P1 )=6.948E+00;EX(V1 )=5.521E-02 +EX(W1 )=3.651E+00;EX(KE )=1.023E+00 +EX(EP )=2.000E+01;EX(PRPS)=8.773E-01 +EX(TWAL)=1.591E-01;EX(TAVE)=1.775E+01 +EX(CNH1)=2.044E-04 +EX(SPH1)=8.773E+02;EX(ENUL)=3.445E-05 +EX(KOND)=4.921E-02 +EX(YPLS)=2.048E-02;EX(REYN)=3.637E+03 +EX(LTLS)=2.731E-02;EX(WDIS)=1.313E-01 +EX(TEM1)=1.802E+01;EX(TDIF)=4.793E-01 +EX(NUSC)=4.028E-02;EX(NUSS)=3.917E+00 +EX(HTCB)=2.197E-01;EX(STRS)=7.984E-04 +EX(EPRS)=1.621E-06;EX(EPCR)=9.204E-05 +EX(LEN1)=3.308E-02 +EX(SKIN)=6.523E-01;EX(ENUT)=1.659E-02 +EX(CP )=9.382E-02 WHEN 2L,2 +EX(P1 )=6.415E+00;EX(V1 )=7.046E-02 +EX(W1 )=3.480E+00;EX(KE )=1.205E+00 +EX(EP )=2.473E+01;EX(PRPS)=8.773E-01 +EX(NUSC)=1.305E-02;EX(NUSS)=1.269E+00 +EX(HTCB)=7.117E-02;EX(TWAL)=1.724E-01 +EX(TAVE)=1.775E+01;EX(CNH1)=2.049E-04 +EX(SPH1)=8.773E+02;EX(ENUL)=3.445E-05 +EX(KOND)=4.921E-02;EX(CP )=1.012E-01 +EX(STRS)=8.089E-04;EX(YPLS)=1.928E-02 +EX(REYN)=3.812E+03;EX(LTLS)=2.731E-02 +EX(WDIS)=1.313E-01;EX(ENUT)=1.789E-02 +EX(TEM1)=1.804E+01;EX(TDIF)=4.899E-01 +EX(EPRS)=1.046E+00;EX(EPCR)=2.691E-03 +EX(LEN1)=3.231E-02 +EX(SKIN)=6.179E-01 WHEN KW,2 +EX(P1 )=6.574E+00;EX(V1 )=6.217E-02 +EX(W1 )=3.500E+00;EX(KE )=1.141E+00 +EX(EP )=2.584E+01;EX(PRPS)=8.773E-01 +EX(NUSC)=1.451E-02;EX(NUSS)=1.411E+00 +EX(HTCB)=7.912E-02;EX(TWAL)=1.733E-01 +EX(TAVE)=1.775E+01;EX(SPH1)=8.773E+02 +EX(ENUL)=3.445E-05;EX(KOND)=4.921E-02 +EX(STRS)=6.844E-04 +EX(YPLS)=1.587E-02;EX(OMEG)=5.470E+02 +EX(TEM1)=1.808E+01;EX(TDIF)=5.381E-01 +EX(CNH1)=2.034E-04 +EX(OMRS)=2.121E-06;EX(OMCR)=2.725E-04 +EX(LEN1)=3.578E-02 +EX(SKIN)=1.676E+00;EX(REYT)=4.551E+02 +EX(ENUT)=1.769E-02;EX(CP )=9.825E-02 WHEN KWR,3 +EX(P1 )=7.792E+00;EX(V1 )=4.744E-02 +EX(W1 )=3.797E+00;EX(KE )=8.805E-01 +EX(EP )=2.037E+01;EX(PRPS)=8.773E-01 +EX(NUSC)=1.219E-02;EX(NUSS)=1.186E+00 +EX(HTCB)=6.650E-02;EX(TWAL)=1.779E-01 +EX(TAVE)=1.775E+01;EX(SPH1)=8.773E+02 +EX(ENUL)=3.445E-05;EX(KOND)=4.921E-02 +EX(STRS)=6.314E-04 +EX(YPLS)=1.459E-02;EX(DWDZ)=1.031E+00 +EX(DWDY)=8.636E+01;EX(DVDZ)=1.720E-01 +EX(DVDY)=9.311E-01;EX(DUDX)=2.371E-01 +EX(GEN1)=1.627E+05;EX(FBP )=8.064E-01 +EX(OMEG)=6.081E+02;EX(CP )=8.539E-02 +EX(TEM1)=1.825E+01;EX(CNH1)=2.101E-04 +EX(OMRS)=1.832E-06;EX(OMCR)=1.146E-03 +EX(LEN1)=2.301E-02 +EX(SKIN)=6.089E-01;EX(XWP )=1.190E-01 +EX(ENUT)=1.049E-02;EX(TDIF)=7.243E-01 WHEN KWM,3 +EX(P1 )=6.541E+00;EX(V1 )=6.218E-02 +EX(W1 )=3.488E+00;EX(KE )=1.127E+00 +EX(EP )=2.083E+01;EX(PRPS)=8.773E-01 +EX(NUSC)=1.468E-02;EX(NUSS)=1.428E+00 +EX(HTCB)=8.009E-02;EX(TWAL)=1.769E-01 +EX(TAVE)=1.775E+01;EX(SPH1)=8.773E+02 +EX(ENUL)=3.445E-05;EX(KOND)=4.921E-02 +EX(STRS)=6.675E-04 +EX(YPLS)=1.530E-02;EX(LTLS)=2.731E-02 +EX(WDIS)=1.313E-01;EX(BF1 )=6.856E-01 +EX(OMEG)=5.648E+02;EX(ENUT)=1.824E-02 +EX(TEM1)=1.814E+01;EX(TDIF)=5.959E-01 +EX(CNH1)=2.025E-04 +EX(OMRS)=1.815E-06;EX(OMCR)=3.229E-04 +EX(LEN1)=3.607E-02;EX(SKIN)=1.529E+00 +EX(CP )=9.979E-02 WHEN KWS,3 +EX(P1 )=6.900E+00;EX(V1 )=5.786E-02 +EX(W1 )=3.583E+00;EX(KE )=1.087E+00 +EX(EP )=2.015E+01;EX(PRPS)=8.773E-01 +EX(NUSC)=1.408E-02;EX(NUSS)=1.369E+00 +EX(HTCB)=7.681E-02;EX(TWAL)=1.778E-01 +EX(TAVE)=1.775E+01 +EX(SKIN)=1.659E+00;EX(SPH1)=8.773E+02 +EX(ENUL)=3.445E-05;EX(KOND)=4.921E-02 +EX(STRS)=6.137E-04 +EX(YPLS)=1.447E-02;EX(LTLS)=2.731E-02 +EX(WDIS)=1.313E-01;EX(GEN1)=5.891E+07 +EX(BF2 )=7.881E-01;EX(BF1 )=6.633E-01 +EX(OMEG)=5.686E+02;EX(ENUT)=1.600E-02 +EX(TEM1)=1.818E+01;EX(TDIF)=6.343E-01 +EX(CNH1)=2.053E-04;EX(LEN1)=3.439E-02 +EX(OMRS)=1.067E-06;EX(OMCR)=1.415E-04 +EX(LEN1)=3.346E-02;EX(CP )=9.523E-02 ENDCASE STOP