TALK=T;RUN( 1, 1) ** LOAD(x208) from the x Input Library GROUP 1. Run title and other preliminaries TEXT(LRN MODEL BKWRD-FACING STEP Y-X :T208 TITLE DISPLAY The problem concerns 2d incompressible, turbulent flow and heat transfer over a backward-facing step at a Reynolds number of 45,000 based on step height Hs and inlet velocity. The expansion ratio Hc/Hs = 3.0, where Hc is the downstream channel height 3.0. The case is similar to that described for library case T103, excepting that heat transfer is considered and the calculation is performed with any one of the following low-Re models: the Lam- Bremhorst k-e model, the Chen-Kim k-e model, the 2-layer k-e model, and the Wilcox or Menter k-w models, or the k-w-SST model. The thermal field is calculated for a constant heat flux through the south wall downstream of the step and an adiabatic condition on all other walls. The laminar Prandtl number is taken as 1.0 and the turbulent Prandtl as 0.86. ENDDIS For this case, both the low- and high-Re forms of the k-e model are known to underpredict the measured reattachment length of Xr/H=7.1 by about 15%. The reattachments lengths predicted by the various turbulence models are compared with the measured value below: LB CK 2-L KW KWM KWR SST EXPT Xr/H = 5.3 6.8 6.4 7.3 6.6 7.8 7.2 7.1 The calculations employ a relatively coarse non-uniform mesh of NX=80 by NY=80 which concentrates grid cells close to the wall. The solution is unlikely to produce grid-independent results because most of the near-wall y+ values cells are too large, typically ranging from 0.05 to 4. The experimental values are taken from: Kim,J., Klein,S.J. & Johnston,J.P., "Investigation of separation & reattachment of a turbulent shear layer : Flow over a backward-facing step" Report No. MD-37. Thermosciences Division, Dept. of Mech Eng., Stanford University (1978). This AUTOPLOT sequence provides a plot of the axial velocity U1 along the bottom surface of the solution domain versus normalised axial distance X. The axial coordinate 0.0 corresponds to the step location. The reattachment point corresponds the axial location where U1 changes from negative to positive. AUTOPLOT USE file phida 3 da 1 u1 y 1 divide x .0381 1 shift x -4 1 col9 1 level y 0;level x 0 scale x -4 15 msg Velocity (U1) profile msg Press e to END ENDUSE CHAR(CTURB,TLSC) INTEGER(NYS,NXS,NXS2) REAL(HEIGHT,WIDTH,CLEN,SLEN,SLEN2,REYNO,UIN,TKEIN,EPSIN,FRIC,MIXL) REAL(QIN,AREAO,OMEGIN) BOOLEAN(KWMOD);KWMOD=F ** Calculation of domain specifications ** channel length=0.762m & channel width=0.1143m HEIGHT=0.0381;WIDTH=3.*HEIGHT SLEN=4.*HEIGHT;SLEN2=5.5*HEIGHT;CLEN=20.*HEIGHT REYNO=4.5E4;UIN=13.;FRIC=0.018;MIXL=0.09*HEIGHT TKEIN=0.25*UIN*UIN*FRIC;EPSIN=0.1643*TKEIN**1.5/MIXL GROUP 2. Transience; time-step specification GROUP 3. X-direction grid specification NXS=14;NXS2=61 SUBGRD(X,1,NXS,SLEN,-2.0);SUBGRD(X,NX+1,NXS2,SLEN2,2.0) SUBGRD(X,NX+1,80,CLEN-SLEN-SLEN2,1.2) GROUP 4. Y-direction grid specification NYS=40 SUBGRD(Y,1,-NYS,HEIGHT,1.7);SUBGRD(Y,NY+1,-80,2.0*HEIGHT,2.0) GROUP 5. Z-direction grid specification GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named SOLVE(P1,U1,V1,TEM1);SOLUTN(P1,Y,Y,Y,N,N,N);STORE(ENUT,LEN1) SOLUTN(U1,P,P,P,P,P,N);SOLUTN(V1,P,P,P,P,P,N) MESG( Enter the required turbulence model: MESG( LB - Low-Re Lam-Brem. k-e model (default) MESG( CK - Low-Re Lam-Brem. k-e model MESG( 2L - Low-Re 2-layer k-e model MESG( KW - Low-Re Wilcox 1988 k-w model MESG( KWR - Low-Re Wilcox 2008 k-w model MESG( KWM - Low-Re Menter 1992 k-w model MESG( KWS - Low-Re k-w SST model MESG( READVDU(CTURB,CHAR,LB) CASE :CTURB: OF WHEN LB,2 + TEXT(Low-Re LB k-e BF Step Y-X :T208 + MESG(Low-Re LB k-e turbulence model + KELIN=1;TLSC=EP + TURMOD(KEMODL-LOWRE);STORE(REYN,FMU,FTWO) WHEN CK,2 + TEXT(Low-Re CK k-e BF Step Y-X :T208 + MESG(Low-Re Chen-Kim k-e turbulence model + KELIN=1;TLSC=EP + TURMOD(KECHEN-LOWRE);STORE(REYN,FMU,FTWO) WHEN 2L,2 + TEXT(2-Layer k-e BF Step Y-X :T208 + MESG(Low-Re 2-layer k-e turbulence model + KELIN=1;TLSC=EP + TURMOD(KEMODL-2L);STORE(REYN,FMU,FTWO) WHEN KW,2 + TEXT(Low-Re Wilcox 1988 k-w BF Step Y-X :T208 + MESG(Low-Re Wilcox 1988 k-w model + TLSC=OMEG + TURMOD(KOMODL-LOWRE);STORE(REYT,FMU,FTWO) + STORE(EP);EPSIN=EPSIN/(0.09*TKEIN) WHEN KWR,3 + TEXT(Low-Re Wilcox 2008 k-w BF Step Y-X :T208 + MESG(Low-Re Wilcox 2008 k-w model + TLSC=OMEG;KWMOD=T + TURMOD(KWMODLR-LOWRE);STORE(REYT) + EPSIN=EPSIN/(0.09*TKEIN);FIINIT(FBP)=1.0 WHEN KWM,3 TEXT(Low-Re Menter k-w BF Step Y-X :T208 + MESG(Low-Re Menter k-w model + TURMOD(KWMENTER-LOWRE);TLSC=OMEG + STORE(EP);EPSIN=EPSIN/(0.09*TKEIN) + STORE(CDWS) ! output cross-diffusion term WHEN KWS,3 TEXT(Low-Re k-w SST BF StepY-X :T208 + MESG(Menter 1992 Low-Re k-w SST model + TURMOD(KWSST-LOWRE);TLSC=OMEG + STORE(EP);EPSIN=EPSIN/(0.09*TKEIN) + STORE(CDWS)! output cross-diffusion term ENDCASE STORE(YPLS) GROUP 8. Terms (in differential equations) & devices TERMS(TEM1,N,P,P,P,P,P) GROUP 9. Properties of the medium (or media) RHO1=1.0;ENUL=UIN*HEIGHT/REYNO;PRT(TEM1)=0.86 PRNDTL(TEM1)=1.0;CP1=1000.0 GROUP 10. Inter-phase-transfer processes and properties GROUP 11. Initialization of variable or porosity fields CONPOR(0.0,VOLUME,-1,-NXS,-1,-NYS,1,1) STORE(PRPS) PATCH(BLOCK,INIVAL,1,NXS,1,NYS,1,1,1,1) INIT(BLOCK,PRPS,0.,198) EGWF=T FIINIT(U1)=0.1*UIN;FIINIT(V1)=0.0;FIINIT(P1)=1.3E-4 FIINIT(:TLSC:)=EPSIN;FIINIT(KE)=0.04*UIN*UIN;FIINIT(TEM1)=0.5 GROUP 13. Boundary conditions and special sources INLET(INLET,WEST,1,1,NYS+1,NY,1,1,1,1);VALUE(INLET,P1,RHO1*UIN) VALUE(INLET,U1,UIN);VALUE(INLET,KE,TKEIN);VALUE(INLET,:TLSC:,EPSIN) PATCH(OUTLET,EAST,NX,NX,1,NY,1,1,1,1);COVAL(OUTLET,P1,1.E5,0.0) COVAL(OUTLET,TEM1,ONLYMS,SAME) WALL(WALLN,NORTH,1,NX,NY,NY,1,1,1,1) WALL(WALLS,SOUTH,NXS+1,NX,1,1,1,1,1,1) ** Heat input; take cp=1000. & set Qin for unit temperature rise QIN=RHO1*CP1*2.*HEIGHT*UIN;AREAO=ZWLAST*(CLEN-SLEN) PATCH(HEATIN,SOUTH,NXS+1,NX,1,1,1,NZ,1,1) COVAL(HEATIN,TEM1,FIXFLU,QIN/AREAO) GROUP 14. Downstream pressure for PARAB=.TRUE. GROUP 15. Termination of sweeps LSWEEP=1500;TSTSWP=-1 GROUP 16. Termination of iterations LITER(U1)=2;LITER(V1)=2;LITER(KE)=5;LITER(:TLSC:)=5;LITER(TEM1)=10 GROUP 17. Under-relaxation devices REAL(DTF);DTF=10.*CLEN/UIN/NX; RELAX(P1,LINRLX,1.0) CASE :CTURB: OF WHEN LB,2 ** use heavier relaxation on KE + KELIN=3; RELAX(KE,LINRLX,0.3); RELAX(EP,LINRLX,0.3) WHEN CK,2 ** use heavier relaxation on KE + KELIN=3; RELAX(KE,LINRLX,0.3); RELAX(EP,LINRLX,0.5) WHEN 2L,2 ** incomplete convergence - stalled residuals + KELIN=3; RELAX(KE,LINRLX,0.3); RELAX(EP,LINRLX,0.3) + RELAX(KE,FALSDT,DTF/10.);RELAX(:TLSC:,FALSDT,DTF/10.) + RELAX(ENUT,LINRLX,0.3) + OUTPUT(REYN,Y,N,Y,N,Y,Y) + OUTPUT(FTWO,Y,N,Y,N,Y,Y) + OUTPUT(FMU,Y,N,Y,N,Y,Y) +(STORED of EPCO is CORR(EP) with IMAT<100) +(STORED of EPRE is RESI(EP) with IMAT<100) + OUTPUT(EPCO,Y,N,Y,N,Y,Y);OUTPUT(EPRE,Y,N,Y,N,Y,Y) + IXMON=18;IYMON=39 WHEN KW,2 + DTF=DTF/10 + RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF) WHEN KWR,3 + DTF=DTF/10;LSWEEP=2000 + RELAX(KE,FALSDT,DTF);RELAX(:TLSC:,FALSDT,DTF) WHEN KWM,3 + DTF=DTF/10 + RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF) WHEN KWS,3 + DTF=DTF/10 + RELAX(KE,FALSDT,DTF); RELAX(:TLSC:,FALSDT,DTF) ENDCASE RELAX(U1,FALSDT,DTF); RELAX(V1,FALSDT,DTF); RELAX(TEM1,FALSDT,100.*DTF) GROUP 18. Limits on variables or increments to them GROUP 21. Print-out of variables SPEDAT(SET,OUTPUT,NOFIELD,L,T) GROUP 22. Monitor print-out SPEDAT(SET,GXMONI,PLOTALL,L,T) ITABL=3;IXMON=NXS+2;IPLTL=2000;IYMON=NYS-2;NPRMON=10000 DISTIL=T CASE :CTURB: OF WHEN LB,2 + EX(P1 )=1.976E+01; EX(U1 )=6.848E+00; EX(V1 )=2.304E-01 + EX(KE )=1.992E+00; EX(EP )=4.018E+02; EX(TEM1)=4.132E+00 + EX(PRPS)=9.125E-01; EX(EPKE)=2.147E+02 + EX(REYN)=2.129E+03; EX(LTLS)=6.673E-04; EX(WDIS)=1.796E-02 + EX(FTWO)=9.083E-01; EX(FMU )=8.250E-01; EX(LEN1)=3.382E-03 + EX(ENUT)=2.477E-03; EX(YPLS)=7.523E-02 WHEN CK,2 + EX(P1 )=2.161E+01; EX(U1 )=6.836E+00; EX(V1 )=1.881E-01 + EX(KE )=1.543E+00; EX(EP )=3.550E+02; EX(TEM1)=5.842E+00 + EX(PRPS)=9.125E-01; EX(EPKE)=2.307E+02 + EX(REYN)=1.926E+03; EX(LTLS)=6.673E-04; EX(WDIS)=1.796E-02 + EX(FTWO)=9.079E-01; EX(FMU )=8.176E-01; EX(LEN1)=3.057E-03 + EX(ENUT)=1.869E-03; EX(YPLS)=6.854E-02 WHEN 2L,2 + EX(P1 )=2.133E+01; EX(U1 )=6.940E+00; EX(V1 )=2.420E-01 + EX(KE )=1.780E+00; EX(EP )=3.938E+02; EX(TEM1)=5.698E+00 + EX(PRPS)=9.125E-01; + EX(REYN)=2.106E+03; EX(LTLS)=6.673E-04; EX(WDIS)=1.796E-02 + EX(FTWO)=4.456E+00; EX(FMU )=8.314E-01; EX(LEN1)=2.855E-03 + EX(ENUT)=2.038E-03; EX(EPKE)=5.982E+02; EX(YPLS)=6.262E-02 + EX(EPKE)=4.910E+02 WHEN KW,2 + EX(P1 )=2.313E+01;EX(U1 )=6.828E+00 + EX(PRPS)=9.125E-01 + EX(FTWO)=8.430E-01;EX(FMU )=7.824E-01 + EX(LEN1)=2.812E-03;EX(V1 )=1.865E-01 + EX(KE )=1.461E+00;EX(EP )=4.378E+02 + EX(TEM1)=7.865E+00;EX(REYT)=1.647E+02 + EX(OMEG)=1.317E+04;EX(ENUT)=1.763E-03 + EX(YPLS)=5.269E-02 WHEN KWR,3 + EX(P1 )=2.317E+01;EX(U1 )=6.836E+00 + EX(V1 )=1.715E-01;EX(KE )=1.302E+00 + EX(EP )=2.629E+02;EX(TEM1)=8.757E+00 + EX(YPLS)=4.995E-02 + EX(REYT)=9.124E-11;EX(DVDY)=1.434E+01 + EX(DVDX)=6.857E+00;EX(DUDY)=1.018E+03 + EX(DUDX)=1.416E+01;EX(GEN1)=1.356E+09 + EX(FBP )=9.115E-01;EX(XWP )=2.779E-04 + EX(OMEG)=1.407E+04;EX(PRPS)=9.125E-01 + EX(LEN1)=2.602E-03;EX(ENUT)=1.553E-03 WHEN KWM,3 + EX(P1 )=2.206E+01;EX(U1 )=6.865E+00 + EX(V1 )=2.007E-01;EX(KE )=1.476E+00 + EX(EP )=2.756E+02;EX(TEM1)=7.585E+00 + EX(YPLS)=5.109E-02 + EX(CDWS)=6.780E+04;EX(LTLS)=6.672E-04 + EX(WDIS)=1.796E-02;EX(BF1 )=6.030E-01 + EX(OMEG)=1.333E+04;EX(PRPS)=9.125E-01 + EX(LEN1)=2.681E-03;EX(ENUT)=1.762E-03 WHEN KWS,3 + EX(P1 )=2.243E+01;EX(U1 )=6.858E+00 + EX(V1 )=1.858E-01;EX(KE )=1.399E+00 + EX(EP )=2.645E+02;EX(TEM1)=8.092E+00 + EX(YPLS)=4.956E-02 + EX(CDWS)=6.546E+04;EX(LTLS)=6.672E-04 + EX(WDIS)=1.796E-02;EX(GEN1)=2.738E+09 + EX(BF2 )=8.100E-01;EX(BF1 )=5.905E-01 + EX(OMEG)=1.332E+04;EX(PRPS)=9.125E-01 + EX(LEN1)=2.613E-03;EX(ENUT)=1.604E-03 ENDCASE STOP