TALK=T;RUN( 1, 1) ** LOAD(x205) from the x Input Library GROUP 1. Run title and other preliminaries TEXT(LAM-BRE KE_1D PLANE COUETTE FLOW :T205 TITLE DISPLAY The problem considered is plane turbulent couette flow in a channel with one moving wall, as simulated for library case T100 using various high-Re turbulence models with wall functions. Here, the turbulence is simulated by use of various low-Re k-e and k-w models. The calculation integrates down to the wall and the solution is performed by use of the single-slab solver. A non- uniform grid is employed so as to concentrate cells very close to the walls. The Reynolds number is 1.E5 based on the channel height and the average velocity. For this flow, the shear stress is uniform across the flow and hence the axial pressure-gradient is zero. The velocity profile is S-shaped and symmetrical about the central plane, and so the average velocity is one half of the velocity of the moving wall. ENDDIS Comparisons between measured and computed skin-friction coefficients Cf are made below: Cf Data - Telbany & Reynolds [1982] 3.070E-3 LB low-Re k-e 3.787E-3 Chen-Kim low-Re k-e 3.503E-3 Wilcox 1988 low-Re k-w 3.212E-3 Wilcox 2008 low-Re k-w 3.086E-3 Menter low-Re k-w 3.207E-3 k-w SST low-Re model 3.065E-3 where Cf =2.*tauw/(rho*uav)**2 and Uav is the average velocity. The following AUTOPLOT use file produces three plots; the first is the axial velocity profile; the second is the turbulence energy profile; and the third is the turbulent viscosity profile. AUTOPLOT USE file phi 5 da 1 w1;col9 1 msg Velocity (W1) profile msg Press RETURN to continue pause clear da 1 ke;col9 1 msg KE profile msg Press RETURN to continue pause clear da 1 enut;col9 1 msg ENUT profile msg Press e to END ENDUSE CHAR(CTURB,TLSC);BOOLEAN(VARLAM);VARLAM=T REAL(HEIGHT,WTOP,REY,TKEIN,EPSIN,MIXL,DTF) REAL(WAV,US,MASIN,DELT1,DELY,KFAC,AA) INTEGER(NY2,JJM,JJJ) HEIGHT=0.1;WTOP=1.0; REY=1.E5;WAV=0.5*WTOP ** US from data of El Telbany & Reynolds [1982] US=WAV*0.196/LOG10(REY);TKEIN=US*US/.3 MIXL=0.045*HEIGHT;EPSIN=TKEIN**1.5/MIXL*0.1643 GROUP 4. Y-direction grid specification ENULA=WAV*HEIGHT/REY ** define first dely from wall and the grid-expansion factor Kfac which defines a constant ratio of lengths of two adjacent cells. DELT1=0.5*ENULA/US;KFAC=1.08;DELY=DELT1/(0.5*HEIGHT) ** calculate NY from dely & Kfac AA=(0.5/DELY)*(KFAC-1.0)+1.0;AA=LOG(AA)/LOG(KFAC)+1.0001 NY2=AA;NY=2*NY2 ** define uniform grid initially IREGY=1;GRDPWR(Y,NY,YVLAST,1.0) ** compute expanding grid from south boundary over one half of the channel width YFRAC(1)=DELY DO JJ=2,NY2 + JJM=JJ-1 + DELY=KFAC*DELY + YFRAC(JJ)=YFRAC(JJM)+DELY ENDDO YFRAC(NY2)=0.5 ** create symmetrical grid in the second half of the channel JJJ=0 DO JJ=NY-1,NY2+1,-1 + JJJ=JJJ+1 + YFRAC(JJ)=1.-YFRAC(JJJ) ENDDO YFRAC(NY)=1.0;YVLAST=HEIGHT GROUP 7. Variables stored, solved & named SOLVE(W1);STORE(ENUT,LEN1);SOLUTN(W1,P,P,P,P,P,N) STORE(STRS) (stored of CF is 2.*STRS/(RHO1*:WAV:*:WAV:)) MESG( Enter the required turbulence model: MESG( CK - Chen-Kim low-Re k-e model MESG( LB - Lam-Bemhorst low-Re k-e model (default) MESG( KW - Wilcox 1988 low-Re k-w model MESG( KWR - Wilcox 2008 low-Re k-w model MESG( KWM - Menter 1992 low-Re k-w model MESG( KWS - Low-Re k-w SST model MESG( READVDU(CTURB,CHAR,LB) CASE :CTURB: OF WHEN CK,2 + TEXT(CHEN-KIM KE_1D PLANE COUETTE FLOW :T205 + MESG(Chen-Kim low-Re k-e model + TURMOD(KECHEN-LOWRE);KELIN=1;TLSC=EP STORE(FMU,REYT,REYN,FONE,FTWO) WHEN LB,2 + MESG(Lam-Bremhorst low-Re k-e model + TURMOD(KEMODL-LOWRE);KELIN=1;TLSC=EP + STORE(FMU,REYT,REYN,FONE,FTWO) WHEN KW,2 + TEXT(WILCOX 1988 k-w_1D PLANE COUETTE FLOW :T205 + MESG(Wilcox 1988 k-w low-Re model + TURMOD(KWMODL-LOWRE);TLSC=OMEG + EPSIN=EPSIN/(0.09*TKEIN) ** the following line trashes the solution + STORE(FMU,REYT,REYN,FONE,FTWO) + STORE(REYT,FONE) WHEN KWR,3 + TEXT(WILCOX 2008 k-w_1D PLANE COUETTE FLOW :T205 + MESG(Wilcox 2008 k-w low-Re model + TURMOD(KWMODLR-LOWRE);TLSC=OMEG + EPSIN=EPSIN/(0.09*TKEIN) WHEN KWM,3 TEXT(Menter k-w_1D PLANE COUETTE FLOW :T205 + MESG(Menter 1992 low-Re k-w model + TURMOD(KWMENTER-LOWRE);TLSC=OMEG + STORE(BF1) + EPSIN=EPSIN/(0.09*TKEIN) + STORE(BF1,GEN1) WHEN KWS,3 TEXT(SST k-w_1D PLANE COUETTE FLOW :T205 + MESG(Menter 1992 low-Re k-w SST model + TURMOD(KWSST-LOWRE);TLSC=OMEG + STORE(BF1,BF2,GEN1) + EPSIN=EPSIN/(0.09*TKEIN) ENDCASE GROUP 8. Terms (in differential equations) & devices ** Deactivate convection for single-slab solution TERMS(W1,N,N,P,P,P,P);TERMS(KE,Y,N,P,P,P,P) TERMS(:TLSC:,Y,N,P,P,P,P) GROUP 9. Properties of the medium (or media) ENUL=ENULA ** test for ground-set enul IF(VARLAM) THEN + TMP1=CONST;TMP1A=0.0;ENUL=LINTEM ENDIF GROUP 11. Initialization of variable or porosity fields FIINIT(:TLSC:)=EPSIN;FIINIT(KE)=TKEIN PATCH(ICOUF,LINVLY,1,1,1,NY,1,NZ,1,1) INIT(ICOUF,W1,WTOP/HEIGHT,0.0) GROUP 13. Boundary conditions and special sources ** moving upper wall WALL(WALLN,NORTH,1,1,NY,NY,1,NZ,1,1);COVAL(WALLN,W1,LOGLAW,WTOP) ** stationary bottom wall WALL(WALLS,SOUTH,1,1,1,1,1,NZ,1,1) GROUP 15. Termination of sweeps LSWEEP=80;TSTSWP=-1;LITHYD=6 GROUP 16. Termination of iterations MASIN=RHO1*WAV*HEIGHT; RESREF(W1)=1.E-12*MASIN*WAV RESREF(KE)=RESREF(W1)*TKEIN; RESREF(:TLSC:)=RESREF(W1)*EPSIN GROUP 17. Under-relaxation devices DTF=0.1*ZWLAST/WAV RELAX(W1,FALSDT,DTF); RELAX(KE,FALSDT,DTF/4.) RELAX(:TLSC:,FALSDT,DTF/4.) GROUP 18. Limits on variables or increments to them VARMIN(W1)=1.E-10 GROUP 22. Spot-value print-out IYMON=2;NPLT=5;NZPRIN=1;NYPRIN=1;IYPRF=1 GROUP 24. Dumps for restarts WALPRN=T LIBREF = 205 DISTIL=T CASE :CTURB: OF WHEN CK,2 +EX(W1 )=5.000E-01;EX(KE )=1.460E-03 +EX(EP )=1.538E-02;EX(FTWO)=9.652E-01 +EX(FONE)=2.673E+00;EX(REYN)=7.445E+02 +EX(REYT)=1.689E+03;EX(FMU )=7.582E-01 +EX(LTLS)=3.596E-04;EX(WDIS)=9.707E-03 +EX(LEN1)=3.612E-03;EX(ENUT)=7.447E-05 +EX(CF )=5.308E-05;EX(STRS)=6.635E-06 WHEN LB,2 +EX(W1 )=5.000E-01;EX(KE )=1.589E-03 +EX(EP )=1.690E-02;EX(FTWO)=9.653E-01 +EX(FONE)=2.240E+00;EX(REYN)=7.737E+02 +EX(REYT)=1.833E+03;EX(FMU )=7.624E-01 +EX(LTLS)=3.596E-04;EX(WDIS)=9.707E-03 +EX(LEN1)=3.769E-03;EX(ENUT)=8.077E-05 +EX(CF )=5.737E-05;EX(STRS)=7.172E-06 WHEN KW,2 +EX(W1 )=5.000E-01;EX(KE )=1.327E-03 +EX(EP )=3.051E-02;EX(FTWO)=8.619E-01 +EX(FONE)=1.314E+00;EX(REYN)=1.000E-10 +EX(REYT)=1.355E+02;EX(FMU )=7.765E-01 +EX(OMEG)=4.830E+03;EX(LEN1)=3.358E-03 +EX(ENUT)=6.550E-05;EX(CF )=4.866E-05 +EX(STRS)=6.082E-06 WHEN KWR,3 +EX(W1 )=5.000E-01;EX(KE )=1.087E-03 +EX(EP )=1.442E-02;EX(DWDY)=1.159E+02 +EX(GEN1)=6.141E+04;EX(FBP )=1.000E+00 +EX(OMEG)=5.152E+03;EX(CF )=4.676E-05 +EX(STRS)=5.845E-06;EX(LEN1)=3.240E-03 +EX(ENUT)=6.342E-05 WHEN KWM,3 +EX(W1 )=5.001E-01;EX(LTLS)=3.596E-04 +EX(WDIS)=9.707E-03;EX(BF1 )=1.000E+00 +EX(KE )=1.135E-03;EX(EP )=1.526E-02 +EX(GEN1)=6.430E+04;EX(OMEG)=4.874E+03 +EX(CF )=4.858E-05;EX(STRS)=6.073E-06 +EX(LEN1)=3.326E-03;EX(ENUT)=6.637E-05 WHEN KWS,3 +EX(W1 )=5.000E-01;EX(LTLS)=3.596E-04 +EX(WDIS)=9.707E-03;EX(BF2 )=1.000E+00 +EX(BF1 )=1.000E+00;EX(KE )=1.131E-03 +EX(EP )=1.547E-02;EX(GEN1)=6.357E+04 +EX(OMEG)=4.875E+03;EX(CF )=4.816E-05 +EX(STRS)=6.020E-06;EX(LEN1)=3.324E-03 +EX(ENUT)=6.601E-05 ENDCASE STOP