TALK=T;RUN(1,1) DISPLAY The case considered is 3D, steady, incompressible, turbulent flow past a surface-mounted cube in a channel. The flow separates in front of the cube to form a primary and secondary vortex, and the main vortex wraps as a horse-shoe vortex around the cube into the wake. The flow separates at the front corners of the cube on the roof and the side walls; the reattaches on the side walls but not on the roof. A large separation region develops behind the cube which interacts with the horseshoe vortex. In the experiments vortex shedding as observed from the side walls, and due to momentum exchange with the wake, this will lead to a shorter separation length than is reported here for a steady simulation. The height of the cube is 50% of that of the channel. The flow Reynolds number based on channel bulk velocity and cube height H is 40,000. The inlet plane is located 7H upstream of the cube, and the outlet plane 10H downstream of the cube. Because of symmetry conditions, only half of the width of the flow is calculated. A fixed-pressure boundary condition is applied at the outlet, and uniform flow profiles are specified at the inlet. The case is set up to run any one of 6 variants of the k-e model with scalable wall functions, namely the standard model and the MMK, Kato-Launder, RNG, Chen-Kim and realisable variants. An option is provided to also run with the Wilcox 1988 & 2008 k-w models, the Menter Baseline k-w model, and the k-w-SST model.The case has been studied experimentally by Martinuzzi & Tropea [J.Fluids Engng, 115, p85-92,1993] and numerically by Lakehal & Rodi [J.Wind Eng. Ind.Aerodyn, 67 & 68, p65-78, 1997]. For this case, the main parameters that characterise separation are the frontal stagnation point Ys/H, the primary upstream separation point Zf/H, the roof reattachment point Zr/H and the length of the separation zone behind the cube Zb/H. The experimental and computed results for Zb are given below: K-E KL MMK RKE CK RNG KW KWR KWM SST EXPT Zb/H = 2.1 2.72 2.81 2.46 3.1 2.92 1.7 2.88 1.9 3.0 1.61 These results are not grid independent, and the mesh is not fine enough to resolve the expected separation on the roof nor to capture adequately the upstream and downstream separation regions. For this rather coarse mesh, all the k-e models overpredict Zb, and the Wilcox 1988 k-w model gives close agreement with the data. The standard k-e model is known to produce too small a separation on the roof with unrealistic roof reattachment. The modified k-e models produce longer separation regions and no reattachment, which is in agreement with the data. However, the present computations employ insufficient mesh resolution to exemplify these benefits. However, it is likely that more mesh and the inclusion of unsteady effects are required for a much improved prediction of the separation length behind the cube. ENDDIS AUTOPLOT USE file phida 3 d 1 w1 y 1 x 1 plot redr shift x -8 1 scale level y 0 scale x 0 5 ENDUSE ************************************************************ Group 1. Run Title and Number ************************************************************ ************************************************************ TEXT(RK K-E SURFACE CUBE FLOW :T308 ) ************************************************************ ************************************************************ IRUNN = 1 ;LIBREF = 308 ************************************************************ Group 2. Time dependence STEADY = T ************************************************************ Group 3. X-Direction Grid Spacing CARTES = T NX = 38 XULAST =4.5 XFRAC(1)=9.259259E-03 ;XFRAC(2)=0.018519 XFRAC(3)=0.027778 ;XFRAC(4)=0.037037 XFRAC(5)=0.046296 ;XFRAC(6)=0.055556 XFRAC(7)=0.064815 ;XFRAC(8)=0.074074 XFRAC(9)=0.083333 ;XFRAC(10)=0.092593 XFRAC(11)=0.101852 ;XFRAC(12)=0.111111 XFRAC(13)=0.122229 ;XFRAC(14)=0.134235 XFRAC(15)=0.147203 ;XFRAC(16)=0.161208 XFRAC(17)=0.176333 ;XFRAC(18)=0.192668 XFRAC(19)=0.21031 ;XFRAC(20)=0.229363 XFRAC(21)=0.249941 ;XFRAC(22)=0.272165 XFRAC(23)=0.296166 ;XFRAC(24)=0.322088 XFRAC(25)=0.350084 ;XFRAC(26)=0.380319 XFRAC(27)=0.412973 ;XFRAC(28)=0.44824 XFRAC(29)=0.486327 ;XFRAC(30)=0.527462 XFRAC(31)=0.571888 ;XFRAC(32)=0.619867 XFRAC(33)=0.671685 ;XFRAC(34)=0.727649 XFRAC(35)=0.788089 ;XFRAC(36)=0.853365 XFRAC(37)=0.923862 ;XFRAC(38)=1. ************************************************************ Group 4. Y-Direction Grid Spacing NY = 36 YVLAST =2. YFRAC(1)=0.043564 ;YFRAC(3)=0.123435 YFRAC(5)=0.19452 ;YFRAC(7)=0.257785 YFRAC(9)=0.31409 ;YFRAC(11)=0.364202 YFRAC(13)=0.408802 ;YFRAC(15)=0.448495 YFRAC(17)=0.483822 ;YFRAC(19)=0.516178 YFRAC(21)=0.551505 ;YFRAC(23)=0.591198 YFRAC(25)=0.635798 ;YFRAC(27)=0.68591 YFRAC(29)=0.742215 ;YFRAC(31)=0.80548 YFRAC(33)=0.876565 ;YFRAC(35)=0.956436 ************************************************************ Group 5. Z-Direction Grid Spacing PARAB = F NZ = 84 ZWLAST =18. ZFRAC(1)=0.021957 ;ZFRAC(3)=0.062784 ZFRAC(5)=0.099816 ;ZFRAC(7)=0.133405 ZFRAC(9)=0.163871 ;ZFRAC(11)=0.191504 ZFRAC(13)=0.216569 ;ZFRAC(15)=0.239303 ZFRAC(17)=0.259923 ;ZFRAC(19)=0.278627 ZFRAC(21)=0.295591 ;ZFRAC(23)=0.310979 ZFRAC(25)=0.324936 ;ZFRAC(27)=0.337595 ZFRAC(29)=0.349077 ;ZFRAC(31)=0.359492 ZFRAC(33)=0.368938 ;ZFRAC(35)=0.377507 ZFRAC(37)=0.385278 ;ZFRAC(39)=0.393519 ZFRAC(41)=0.402778 ;ZFRAC(43)=0.412037 ZFRAC(45)=0.421296 ;ZFRAC(47)=0.430556 ZFRAC(49)=0.439815 ;ZFRAC(51)=0.448776 ZFRAC(53)=0.45837 ;ZFRAC(55)=0.469354 ZFRAC(57)=0.481929 ;ZFRAC(59)=0.496327 ZFRAC(61)=0.512811 ;ZFRAC(63)=0.531684 ZFRAC(65)=0.553291 ;ZFRAC(67)=0.578029 ZFRAC(69)=0.606352 ;ZFRAC(71)=0.638779 ZFRAC(73)=0.675904 ;ZFRAC(75)=0.718409 ZFRAC(77)=0.767073 ;ZFRAC(79)=0.822788 ZFRAC(81)=0.886576 ;ZFRAC(83)=0.959607 ************************************************************ Group 6. Body-Fitted Coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd ONEPHS = T NAME(1)=P1 ;NAME(3)=U1 NAME(5)=V1 ;NAME(7)=W1 NAME(12)=KE ;NAME(13)=EP NAME(135)=PRPS ;NAME(137)=YPLS NAME(138)=C1E ;NAME(139)=DWDZ NAME(140)=DWDY ;NAME(141)=DWDX NAME(142)=DVDZ ;NAME(143)=DVDY NAME(144)=DVDX ;NAME(145)=DUDZ NAME(146)=DUDY ;NAME(147)=DUDX NAME(148)=EPKE ;NAME(149)=CMU NAME(150)=ENUT * Y in SOLUTN argument list denotes: * 1-stored 2-solved 3-whole-field * 4-point-by-point 5-explicit 6-harmonic averaging SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(U1,Y,Y,N,N,N,N) SOLUTN(V1,Y,Y,N,N,N,N) SOLUTN(W1,Y,Y,N,N,N,N) SOLUTN(KE,Y,Y,N,N,N,N) SOLUTN(EP,Y,Y,N,N,N,N) SOLUTN(PRPS,Y,N,N,N,N,Y) SOLUTN(YPLS,Y,N,N,N,N,Y) SOLUTN(C1E,Y,N,N,N,N,Y) SOLUTN(DWDZ,Y,N,N,N,N,N) SOLUTN(DWDY,Y,N,N,N,N,N) SOLUTN(DWDX,Y,N,N,N,N,N) SOLUTN(DVDZ,Y,N,N,N,N,N) SOLUTN(DVDY,Y,N,N,N,N,N) SOLUTN(DVDX,Y,N,N,N,N,N) SOLUTN(DUDZ,Y,N,N,N,N,N) SOLUTN(DUDY,Y,N,N,N,N,N) SOLUTN(DUDX,Y,N,N,N,N,N) SOLUTN(EPKE,Y,N,N,N,N,N) SOLUTN(CMU,Y,N,N,N,N,N) SOLUTN(ENUT,Y,N,N,N,N,Y) VIST = 150 PRPS = 135 ************************************************************ Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS(P1,Y,Y,Y,N,Y,Y) TERMS(U1,Y,Y,Y,Y,Y,Y) TERMS(V1,Y,Y,Y,Y,Y,Y) TERMS(W1,Y,Y,Y,Y,Y,Y) TERMS(KE,N,Y,Y,Y,Y,N) TERMS(EP,N,Y,Y,Y,Y,N) DIFCUT =0.5 ;ZDIFAC =1. GALA = F ;ADDDIF = F NEWENT = T ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1 ************************************************************ Group 9. Properties used if PRPS is not stored, and where PRPS = -1.0 if it is! RHO1 =1. ;TMP1 =0. ;EL1 = GRND4 TSURR =0. ;TEMP0 =0. ;PRESS0 =0. DVO1DT =0. ;DRH1DP =0. EMISS =0. ;SCATT =0. RADIA =0. ;RADIB =0. EL1A =0. ;EL1B =0. ;EL1C =0. ENUL =2.5E-05 ;ENUT = GRND5 ENUTA =0. ;ENUTB =0. ;ENUTC =0. IENUTA = 14 PRNDTL(U1)=1. ;PRNDTL(V1)=1. PRNDTL(W1)=1. ;PRNDTL(KE)=1. PRNDTL(EP)=1. PRT(U1)=1. ;PRT(V1)=1. PRT(W1)=1. ;PRT(KE)=1. PRT(EP)=1.2 CP1 =1. ;CP2 =1. ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initial field variables (PHIs) FIINIT(P1)=1.3E-04 ;FIINIT(U1)=1.0E-10 FIINIT(V1)=1.0E-03 ;FIINIT(W1)=1. FIINIT(KE)=4.5E-03 ;FIINIT(EP)=2.755394E-04 FIINIT(PRPS)=-1. ;FIINIT(YPLS)=1.0E-10 FIINIT(C1E)=1.0E-10 ;FIINIT(DWDZ)=1.0E-10 FIINIT(DWDY)=1.0E-10 ;FIINIT(DWDX)=1.0E-10 FIINIT(DVDZ)=1.0E-10 ;FIINIT(DVDY)=1.0E-10 FIINIT(DVDX)=1.0E-10 ;FIINIT(DUDZ)=1.0E-10 FIINIT(DUDY)=1.0E-10 ;FIINIT(DUDX)=1.0E-10 FIINIT(EPKE)=1.0E-10 ;FIINIT(CMU)=0.09 FIINIT(ENUT)=1.0E-10 PATCH(CUBE ,INIVAL, 1, 12, 1, 18, 39, 50, 1, 1) INIT(CUBE ,PRPS,0. ,198. ) INIADD = F FSWEEP = 1 NAMFI =CHAM ************************************************************ Group 12. Patchwise adjustment of terms Patches for this group are printed with those for Group 13. Their names begin either with GP12 or & ************************************************************ Group 13. Boundary & Special Sources PATCH(KESOURCE,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(KESOURCE,KE , GRND4 , GRND4 ) PATCH(REKESO ,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(REKESO ,EP , GRND4 , GRND4 ) PATCH(INLET ,LOW , 1, 38, 1, 36, 1, 1, 1, 1) COVAL(INLET ,P1 , FIXFLU ,1. ) COVAL(INLET ,U1 ,0. ,0. ) COVAL(INLET ,V1 ,0. ,0. ) COVAL(INLET ,W1 ,0. ,1. ) COVAL(INLET ,KE ,0. ,4.5E-03 ) COVAL(INLET ,EP ,0. ,2.755394E-04 ) PATCH(OUTL ,HIGH , 1, 38, 1, 36, 84, 84, 1, 1) COVAL(OUTL ,P1 ,1000. ,0. ) COVAL(OUTL ,V1 ,0. ,0. ) COVAL(OUTL ,W1 ,0. ,0. ) COVAL(OUTL ,KE ,0. ,0. ) COVAL(OUTL ,EP ,0. ,0. ) PATCH(WALLN ,NWALL , 1, 38, 36, 36, 1, 84, 1, 1) COVAL(WALLN ,U1 , GRND2 ,0. ) COVAL(WALLN ,W1 , GRND2 ,0. ) COVAL(WALLN ,KE , GRND2 , GRND2 ) COVAL(WALLN ,EP , GRND2 , GRND2 ) PATCH(WALLS ,SWALL , 1, 38, 1, 1, 1, 84, 1, 1) COVAL(WALLS ,U1 , GRND2 ,0. ) COVAL(WALLS ,W1 , GRND2 ,0. ) COVAL(WALLS ,KE , GRND2 , GRND2 ) COVAL(WALLS ,EP , GRND2 , GRND2 ) XCYCLE = F EGWF = T WALLCO = GRND2 SCALWF = T ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 1200 ;ISWC1 = 1 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1 SELREF = T RESFAC =1.0E-05 ************************************************************ Group 16. Terminate Iterations LITER(P1)=50 ;LITER(U1)=10 LITER(V1)=10 ;LITER(W1)=10 LITER(KE)=5 ;LITER(EP)=5 ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03 ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03 ENDIT(KE)=1.0E-03 ;ENDIT(EP)=1.0E-03 ************************************************************ Group 17. Relaxation RELAX(P1,LINRLX,1.) RELAX(U1,FALSDT,0.107143) RELAX(V1,FALSDT,0.107143) RELAX(W1,FALSDT,0.107143) RELAX(KE,FALSDT,0.107143) RELAX(EP,FALSDT,0.107143) RELAX(PRPS,LINRLX,1.) RELAX(YPLS,LINRLX,1.) RELAX(C1E,LINRLX,1.) RELAX(DWDZ,LINRLX,1.) RELAX(DWDY,LINRLX,1.) RELAX(DWDX,LINRLX,1.) RELAX(DVDZ,LINRLX,1.) RELAX(DVDY,LINRLX,1.) RELAX(DVDX,LINRLX,1.) RELAX(DUDZ,LINRLX,1.) RELAX(DUDY,LINRLX,1.) RELAX(DUDX,LINRLX,1.) RELAX(EPKE,LINRLX,1.) RELAX(CMU,LINRLX,0.5) RELAX(ENUT,LINRLX,1.) KELIN = 3 OVRRLX =0. EXPERT = F ;NNORSL = F ************************************************************ Group 18. Limits VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10 VARMAX(U1)=1.0E+06 ;VARMIN(U1)=-1.0E+06 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06 VARMAX(KE)=1.0E+10 ;VARMIN(KE)=1.0E-10 VARMAX(EP)=1.0E+10 ;VARMIN(EP)=1.0E-10 VARMAX(PRPS)=1.0E+10 ;VARMIN(PRPS)=-1.0E+10 VARMAX(YPLS)=1.0E+10 ;VARMIN(YPLS)=-1.0E+10 VARMAX(C1E)=1.0E+10 ;VARMIN(C1E)=-1.0E+10 VARMAX(DWDZ)=1.0E+10 ;VARMIN(DWDZ)=-1.0E+10 VARMAX(DWDY)=1.0E+10 ;VARMIN(DWDY)=-1.0E+10 VARMAX(DWDX)=1.0E+10 ;VARMIN(DWDX)=-1.0E+10 VARMAX(DVDZ)=1.0E+10 ;VARMIN(DVDZ)=-1.0E+10 VARMAX(DVDY)=1.0E+10 ;VARMIN(DVDY)=-1.0E+10 VARMAX(DVDX)=1.0E+10 ;VARMIN(DVDX)=-1.0E+10 VARMAX(DUDZ)=1.0E+10 ;VARMIN(DUDZ)=-1.0E+10 VARMAX(DUDY)=1.0E+10 ;VARMIN(DUDY)=-1.0E+10 VARMAX(DUDX)=1.0E+10 ;VARMIN(DUDX)=-1.0E+10 VARMAX(EPKE)=1.0E+10 ;VARMIN(EPKE)=-1.0E+10 VARMAX(CMU)=1.0E+10 ;VARMIN(CMU)=-1.0E+10 VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10 ************************************************************ Group 19. Data transmitted to GROUND GENK = T PARSOL = F IENUTA = 14 ISG62 = 1 SPEDAT(SET,KECONST,C2E,R,1.9) SPEDAT(SET,OUTPUT,NOFIELD,L,T) SPEDAT(SET,GXMONI,PLOTALL,L,T) SPEDAT(SET,MATERIAL,198,L,T) ************************************************************ Group 20. Preliminary Printout DISTIL = T ;NULLPR = F NDST = 0 DSTTOL =1.0E-02 EX(P1)=0.06155 ;EX(U1)=0.02941 EX(V1)=0.02435 ;EX(W1)=0.9567 EX(KE)=6.595E-03 ;EX(EP)=2.144E-03 EX(PRPS)=0.9774 ;EX(YPLS)=4.925 EX(C1E)=0.4491 ;EX(DWDZ)=0.07234 EX(DWDY)=0.3142 ;EX(DWDX)=0.1289 EX(DVDZ)=0.04032 ;EX(DVDY)=0.05053 EX(DVDX)=0.03186 ;EX(DUDZ)=0.03929 EX(DUDY)=0.03484 ;EX(DUDX)=0.05655 EX(EPKE)=0.1823 ;EX(CMU)=0.1496 EX(ENUT)=7.406E-03 ************************************************************ Group 21. Print-out of Variables INIFLD = F ;SUBWGR = F * Y in OUTPUT argument list denotes: * 1-field 2-correction-eq. monitor 3-selective dumping * 4-whole-field residual 5-spot-value table 6-residual table OUTPUT(P1,Y,N,Y,Y,Y,Y) OUTPUT(U1,Y,N,Y,Y,Y,Y) OUTPUT(V1,Y,N,Y,Y,Y,Y) OUTPUT(W1,Y,N,Y,Y,Y,Y) OUTPUT(KE,Y,N,Y,Y,Y,Y) OUTPUT(EP,Y,N,Y,Y,Y,Y) OUTPUT(PRPS,Y,N,Y,N,N,N) OUTPUT(YPLS,Y,N,Y,N,N,N) OUTPUT(C1E,Y,N,Y,N,N,N) OUTPUT(DWDZ,Y,N,Y,N,N,N) OUTPUT(DWDY,Y,N,Y,N,N,N) OUTPUT(DWDX,Y,N,Y,N,N,N) OUTPUT(DVDZ,Y,N,Y,N,N,N) OUTPUT(DVDY,Y,N,Y,N,N,N) OUTPUT(DVDX,Y,N,Y,N,N,N) OUTPUT(DUDZ,Y,N,Y,N,N,N) OUTPUT(DUDY,Y,N,Y,N,N,N) OUTPUT(DUDX,Y,N,Y,N,N,N) OUTPUT(EPKE,Y,N,Y,N,N,N) OUTPUT(CMU,Y,N,Y,N,N,N) OUTPUT(ENUT,Y,N,Y,N,N,N) ************************************************************ Group 22. Monitor Print-Out IXMON = 1 ;IYMON = 32 ;IZMON = 80 NPRMON = 100 ;NPRMNT = 1 ;TSTSWP = -1 UWATCH = T ;USTEER = T HIGHLO = F ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ;NUMCLS = 5 NXPRIN = -1 ;IXPRF = 1 ;IXPRL = 10000 NYPRIN = 2 ;IYPRF = 1 ;IYPRL = 10000 NZPRIN = 2 ;IZPRF = 1 ;IZPRL = 10000 XZPR = F ;YZPR = F IPLTF = 1 ;IPLTL = 1200 ;NPLT = 10 ISWPRF = 1 ;ISWPRL = 100000 ITABL = 3 ;IPROF = 1 ABSIZ =0.5 ;ORSIZ =0.4 NTZPRF = 1 ;NCOLPF = 50 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20 No PATCHes yet used for this Group ************************************************************ Group 24. Dumps For Restarts SAVE = T ;NOWIPE = F NSAVE =CHAM STOP