TALK=f;RUN(1,1)
  DISPLAY
  
  This problem is the same as that of s222; but not used boundary Fluid-cells.
  
  
  ENDDIS
 ************************************************************
  Group 1. Run Title and Number
 ************************************************************
READQ1=T
  begin_readq1 
 TEXT(Pressurised long cylinder [X,Y]
 
  Declarations and settings
  
REAL(PI,PO,RI,RO,POISSON,YOUNG,POWERX,POWERY) 
PI=1.e7  ! inner pressure 
PO=1.e6 ! outer pressure 

RI=0.2   ! inner radius
RO=0.8   ! outer radius

YOUNG   = 1/(0.5E-11) ! Young's modulus
POISSON=0.3           ! Poisson's ratio

   POWERX = 0.8
   POWERY = 1.25

POWERX = 1
POWERY = 1

integer(caseno,nycyl) ! ncyl is y-direction cell number in solid
  

label ask
mesg(:title:
mesg( Length-constraint settings
mesg( caseno=1 : expansion in z allowed         
mesg( caseno=2 : expansion in z not allowed      
mesg(Enter 1, 2 or blank (default = 1)
readvdu(caseno,int,1)
if(caseno.lt.1) then
 goto ask
endif  
if(caseno.gt.2) then
 goto ask
endif 
caseno

  Grid settings
nycyl=30 
nx=5
nz = 1  

  **** !!! ***
ISG59 = 1

 ************************************************************
 
 ************************************************************
  Group 2. Time dependence
 STEADY  =    T
 ************************************************************
  Group 3. X-Direction Grid Spacing
 CARTES  =    F
 XULAST  = 0.2
 GRDPWR(X,NX,XULAST,POWERX)
 ************************************************************
  Group 4. Y-Direction Grid Spacing
 RINNER = RI
 GRDPWR(Y,NYCYL,RO-RI,POWERY) ! ncyl solid cells
 ************************************************************
  Group 5. Z-Direction Grid Spacing
 ZWLAST  = 1.000000E+00
 GRDPWR(Z,NZ,1.0,1.0)              ! uniform z grid
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
 ONEPHS  =    T
 SOLVE(P1,V1)
 STORE(PRPS)
 STORE(P1TH,PRPS,DEN1,ENUL,DVO1,DRH1)    ! TH means theoretical
 STORE(STRX,SXTH,EPSX,EXTH,STRY,SYTH)    ! provide storage for
 STORE(EPSY,EYTH,STRZ,SZTH,EPSZ,EZTH) ! text-book values
 SOLVE(U1)

 ************************************************************
  GROUP 8. ITERATION NUMBERS ETC
 RESFAC=1.e-7 

 RESREF(V1)=0.0  ! to prevent premature exit
 LITER(V1) = 40 ! from solver
 RESREF(u1)=0.0; LITER(u1) = 100
 ************************************************************
  GROUP 9. PROPERTIES
  
 CSG10='Q1'                  ! materials with various POISSON ratios
  MATFLG=T;NMAT=1         
  160    7800.0    0.3       473.0   43.0      1.0e-5   0.5E-11 
 
 ************************************************************
  GROUP 11. INITIAL VALUES
FIINIT(PRPS)=160

 ************************************************************
  GROUP 13. BOUNDARY & SPECIAL SOURCES
 
PATCH(IN,SOUTH,1,NX,1,1,1,1,1,1)            ! pressurizing inner
COVAL(IN,V1,FIXFLU,PI)                       ! fluid
 
PATCH(OUT,NORTH,1,NX,NY,NY,1,1,1,1)         ! pressurizing outer
COVAL(OUT,V1,FIXFLU,-PO)                      ! fluid             

patch(lowx,wwall,1,1,1,ny,1,1,1,1)
coval(lowx,u1,fIXval,0.0)
patch(highx,ewall,nx,nx,1,ny,1,1,1,1)
coval(highx,u1,fixval,0.0)

  
 IF(CASENO.EQ.1) THEN
 SPEDAT(BOUNDARY,ZCONST,R,0.0)   ! because axial motion allowed
 ENDIF
 
 IF(CASENO.EQ.2) THEN
 SPEDAT(BOUNDARY,ZCONST,R,1.E20) ! because axial motion not allowed
 ENDIF
 

 ************************************************************
  GROUP 15. TERMINATE SWEEPS
 LSWEEP  =  1800 
 ISG21   =  LSWEEP
 ENDIT(V1) =0.0
 RESREF(V1)=0.0                                   
 ENDIT(u1) =0.0
 RESREF(u1)=0.0                                   
 ************************************************************
  GROUP 17. RELAXATION
#CONPROM
 ************************************************************
  GROUP 19. DATA TRANSMITTED TO GROUND
 STRA    =    T
 ************************************************************
  GROUP 23.FIELD PRINT-OUT & PLOT CONTROL
TSTSWP = - 1   ! graphic-mode
ISG52   =    3   !   probe & res



output(den1,n,n,n,n,n,n)  
output(drh1,n,n,n,n,n,n)  
output(dvo1,n,n,n,n,n,n)  
output(enul,n,n,n,n,n,n)  
    output(prps,n,n,n,n,n,n)  
NYPRIN=1
NXPRIN=1
IXMON = NX/2
IYMON = NY-1
IZMON = 1



         Theoretical values according to Benham et al
         and Love (Mathematical Theory of Electricity)
         to be conveyed to earth by way of InForm
         statements.
  inform7begin       
  ! Declarations first:
REAL(RODRI, RISQ, ROSQ, RODRISQ, CONI, CONO, TERM)
REAL( AA, BB, EE)
REAL(LL,GG)  ! Lame's constants
  ! deductions
                                  ! Lame's constants Lamda+LL, mu=GG
LL = YOUNG*POISSON/((1+POISSON)*(1-2.0*POISSON)) ! in terms of YOUNG
GG = YOUNG/(2.0*(1.0+POISSON))           ! and POISSON

RISQ    = RI * RI
ROSQ    = RO * RO
RODRISQ = ROSQ / RISQ
  ! settings from formulae in the above text books 
                                               ! all cases
CONI    = PI / (RODRISQ - 1)
CONO    = PO * RODRISQ / (RODRISQ - 1)

(STORED VAR SYTH IS :CONI:*(1.0 - :ROSQ:/ Rg^2 ) - $
:CONO:*(1.0 - :RISQ:/RG^2) with imat>100)

(STORED VAR SXTH IS :CONI:*(1.0 + :ROSQ:/ Rg^2 ) - $
:CONO:*(1.0 + :RISQ:/RG^2) with imat>100)

BB = (PI-PO) * RISQ * ROSQ / ( 2.0*GG * (ROSQ-RISQ) )   ! Love's B

AA = (PI*RISQ-PO*ROSQ) / ( 2.0*(LL+GG) * (ROSQ-RISQ) )  ! Love's A
                                                        ! first part
IF(CASENO.EQ.1) THEN ! ee and aa for no stress
EE = - LL * (PI*RISQ-PO*ROSQ) / ( GG * (3.0*LL+2.0*GG) )! Love's e
ee
EE = EE / (ROSQ-RISQ)                                   ! concluded
ee
AA = AA - EE*LL/( 2.0* (LL + GG))            ! Love's A concluded
(STORED VAR SZTH IS 0.0 WITH IMAT>100)
TERM = - LL / (GG * (3.0*LL + 2.0*GG) )
TERM = TERM * ( PI*RISQ - PO*ROSQ)
TERM = TERM / ( ROSQ - RISQ )
(STORED VAR EZTH IS :TERM: WITH IMAT>100)
ENDIF                                                 

IF(CASENO.EQ.2) THEN           ! fixed end
(STORED VAR EZTH IS 0 WITH IMAT>100)
TERM = LL/(LL+GG)  
TERM = TERM * ( PI*RISQ - PO*ROSQ)
TERM = TERM / ( ROSQ - RISQ )
(STORED VAR SZTH IS :TERM: WITH IMAT>100)
ENDIF

IF(CASENO.EQ.3) THEN ! cylinder with end plates
EE = (PI*RISQ - PO*ROSQ) / (ROSQ - RISQ)
EE = EE / ( 3.0*LL + 2.0*GG )
AA = AA - EE*LL/( 2.0* (LL + GG))              ! Love's A

TERM = (PI*RISQ - PO*ROSQ)/(ROSQ-RISQ)         ! longitudinal tension
(STORED VAR SZTH IS :TERM: WITH IMAT>100)
 
PATCH(HIFORC,HIGH,1,NX,2,NY-1,NZ-1,NZ-1,1,1)   ! apply to face in z 
COVAL(HIFORC,W1,FIXFLU,TERM)

(STORED VAR EZTH IS :EE: WITH IMAT>100)
TERM = TERM/(3.0*LL+2.0*GG)


TERM = TERM* (ZWLAST-0.02)
(STORED VAR W1TH IS :TERM:*IZ*0.5 WITH IMAT>100)
ENDIF

  ! print to screen and satlog.txt                                             
caseno
nz
AA
BB
EE

                             ! all cases
(STORED VAR V1TH IS :AA:*RV + BB/RV)
(STORED VAR EXTH IS (SXTH - :POISSON:*(SYTH+SZTH))/:YOUNG:)
(STORED VAR EYTH IS (SYTH - :POISSON:*(SXTH+SZTH))/:YOUNG:)
(STORED VAR P1TH IS (EXTH + EYTH + EZTH) WITH IMAT>100)

(STORED VAR P1/T IS P1/P1TH)
(STORED VAR V1/T IS V1/V1TH)
(STORED VAR EX/T IS EPSX/EXTH)
(STORED VAR EY/T IS EPSY/EYTH)
IF(CASENO.EQ.1) THEN
(STORED VAR EZ/T IS EPSZ/EZTH)                             
ENDIF
IF(CASENO.EQ.2) THEN         ! cases 1 and 2 distinguished  
(STORED VAR SZ/T IS STRZ/SZTH)                             
ENDIF
  inform7end


   spedat(rlxfac,rlxu1d,r,0.5)  
   spedat(rlxfac,rlxv1d,r,0.5)  


STOP