TALK=f;RUN(1,1)
photon use
p;;;;
set prop off
con u1 z 1 fi;.001
vec z 1 co 1
pause
con v1 z 1 fi;.001
vec z 1 co 1
pause
con p1 z 1 fi;.001
vec z 1 co 1
pause
con u1/t z 1 fi;.001
vec z 1 co 1
pause
con v1/t z 1 fi;.001
vec z 1 co 1
pause
enduse
DISPLAY
This file presents data-input sets which correspond to 2D (xy)
situations capable of analytical representation in terms of
polynomial stress functions, as described by Timoshenko and
Goodier, 'Theory of Elasticity', Chapter 3, Article 18.
Caseno=1: Plate with uniform shear stress but zero direct stress
(second-degree polynomial with a2=0, b2=finite, c2=0)
The boundary conditons are first expressed by prescribing the
displacements at the edges; the shear stress is compared with the
exact solution.
Then the same problem is solved by prescribing the shear forces
at the boundaries; the computed displacements are compared with
those of the exact solution
Caseno=2: PLate with linear variation of shear stress and
correspondingly non-uniform direct stresses
Analytical solution:
1. StrY = B3 * Y ; StrXY = - B3 * X; StrX = StrZ = 0
U = - P/E * B3 * X * Y;
V = B3/(2*E)* [ Y^2 - (2+P)*X^2]
2. Boundary Condition for U:
LEFT : U = 0;
RIGHT : free
UP : StrXY = - B3*X
DOWN : StrXY = B3*X
3. Boundary Condition for V:
LEFT : V(Y=LY/2) = 0;
RIGHT : StrXY = - B3*LX
UP : StrY = B3*LY/2
DOWN : StrY = B3*LY/2
ENDDIS
************************************************************
Group 1. Run Title and Number
************************************************************
TEXT(2D Plate with polynomial stress function; s200
libref=200
integer(caseno)
mesg(caseno=1: uniform shear
mesg(caseno=2: linear shear
caseno=1
mesg(caseno = :caseno:. OK ?(Y/n)
readvdu(ans,char,y)
if(:ans:.eq.n) then
caseno=2
endif
caseno
Declarations and settings
REAL(FY,LX,LY,POISSON,YOUNG)
FY= 40.0e6 ! H/m^2 = 40 N/mm^2
LX=120.e-3
LY=20.e-3
REAL(B3)
B3 = FY/(LY/2)
YOUNG = 1/0.5E-11 ! Young's modulus
POISSON=0.3 ! Poisson's ratio
INTEGER(NXBODY,NYBODY)
char(formU,formV)
REAL(DLY)
DLY = LY/2
real(CO1,CO2,CO3)
CO1 = -POISSON/YOUNG*B3
CO2 = 0.5/YOUNG*B3
CO3 = (2+POISSON)
formU=:CO1:*XU*(YG-:DLY:)
formV=:CO2:*((YV-:DLY:)^2-:CO3:*XG^2)
************************************************************
Group 2. Time dependence
STEADY = T
************************************************************
Group 3. X-Direction Grid Spacing
CARTES = T
NXBODY = 10
GRDPWR(X,NXBODY,LX,1)
************************************************************
Group 4. Y-Direction Grid Spacing
NYBODY = 10
GRDPWR(Y,NYBODY,LY,1)
************************************************************
Group 5. Z-Direction Grid Spacing
NZ=1
ZWLAST = 0.001
************************************************************
Group 7. Variables: STOREd,SOLVEd,NAMEd
ONEPHS = T
SOLVE(P1,V1,U1)
SOLUTN(P1 ,Y,Y,Y,N,N,N)
SOLUTN(U1 ,Y,Y,Y,N,N,Y)
SOLUTN(V1 ,Y,Y,Y,N,N,Y)
STORE(PRPS,ENUL,DRH1)
STORE(STRX,STRY,STRZ,STXY)
STORE(EPSY,EPSX,EPSZ)
STORE(U1T,V1T,U1/T,V1/T)
inform7begin
**** CALCULATE analytical solution ***
if(caseno.eq.1) then
else
(STORED VAR U1T IS :FORMU: with swps)
(STORED VAR V1T IS :FORMV: with swps)
(STORED VAR U1/T IS U1/(U1T+1.e-20))
(STORED VAR V1/T IS V1/(V1T+1.e-20))
endif
inform7end
************************************************************
GROUP 8. ITERATION NUMBERS ETC
RESFAC=1.e-7
RESREF(V1)=0.0
RESREF(U1)=0.0 ! to prevent premature exit
LITER(V1) = 50 ! from solver
LITER(U1) = 50
LITER(P1) = 50
************************************************************
GROUP 9. PROPERTIES
SPEDAT(SET,MATERIAL,160,L,T)
CSG10='Q1' ! materials with various POISSON ratios
MATFLG=T;NMAT=1
160 7800.0 0.3 473.0 43.0 1.0e-5 0.5e-11
************************************************************
GROUP 11. INITIAL VALUES
fiinit(p1)=0.0
fiinit(u1)=0.0
fiinit(v1)=0.0
inform11begin
(INITIAL PRPS is 160)
inform11end
************************************************************
GROUP 13. BOUNDARY & SPECIAL SOURCES
if(caseno.eq.1) then
PATCH(LEFTV,CELL,2,2,1,NY-1,1,1,1,1) ! LEFT - V1 fixed at x=2
COVAL(LEFTV,V1,1.E2,0.0)
PATCH(RIGHTV,CELL,NX,NX,1,NY-1,1,1,1,1) ! RIGHT - V1 fixed in LY/2
COVAL(RIGHTV,V1,1.E2,1.E-5)
PATCH(TOPU,CELL,1,NX-1,NY,NY,1,1,1,1)
COVAL(TOPU,U1,1.E2,0.0)
PATCH(BOTU,CELL,1,NX-1,1,1,1,1,1,1)
COVAL(BOTU,U1,1.E2,0.0)
else
PATCH(LEFTU,EAST,1,1,1,NY,1,1,1,1) ! LEFT - U1/V1 fixed from analitical
PATCH(LEFTV,NORTH,1,1,1,NY-1,1,1,1,1)
****** Forces V ********
PATCH(UPV,NORTH,1,NX,NY,NY,1,1,1,1)
COVAL(UPV,V1,FIXFLU,FY)
PATCH(DOWNV,SOUTH,1,NX,1,1,1,1,1,1)
COVAL(DOWNV,V1,FIXFLU,FY)
PATCH(RIGHTV,EAST,NX,NX,1,NY-1,1,1,1,1)
COVAL(RIGHTV,V1,FIXFLU,-B3*LX)
****** Forces U ********
PATCH(UPU,NORTH,1,NX-1,NY,NY,1,1,1,1)
PATCH(DOWNU,SOUTH,1,NX-1,1,1,1,1,1,1)
inform13begin
(SOURCE of U1 at LEFTU is COVAL(1.e6,:formU:))
(SOURCE of V1 at LEFTV is COVAL(1.e6,:formV:))
(SOURCE of U1 at UPU is COVAL(FIXFLU,:-B3:*XU))
(SOURCE of U1 at DOWNU is COVAL(FIXFLU,:B3:*XU))
inform13end
endif
SPEDAT(BOUNDARY,ZCONST,R,0.0) ! free to expand in z direction
************************************************************
GROUP 15. TERMINATE SWEEPS
LSWEEP = 1000
ISG21=LSWEEP
************************************************************
GROUP 17. RELAXATION
RELAX(P1 ,LINRLX, 1.000000E+00)
************************************************************
GROUP 19. DATA TRANSMITTED TO GROUND
STRA = T
PARSOL = F
ISG52 = 3 ! probe & res
************************************************************
GROUP 23.FIELD PRINT-OUT & PLOT CONTROL
TSTSWP = - 1 ! graphic-mode
NYPRIN = 1
NXPRIN = 1
IXMON = NX-2
IYMON = 2
IZMON = 1
#maxmin
#endpause
#$s003
STOP