talk=t;run(1,1) PHOTON USE p GR OU X 21 Y 1 3 Z 1 1 GR OU X 1 Y 1 3 Z 1 1 GR OU Y 4 X 1 20 Z 1 1 GR OU Y 1 X 1 20 Z 1 1 GR OU X 6 Y 4 10 Z 1 1 GR OU X 1 Y 4 10 Z 1 1 GR OU Y 11 X 1 5 Z 1 1 GR OU Y 4 X 1 5 Z 1 1 GR OU X 4 Y 11 14 Z 1 1 GR OU X 1 Y 11 14 Z 1 1 GR OU Y 15 X 1 3 Z 1 1 GR OU Y 11 X 1 3 Z 1 1 GR OU X 6 Y 15 22 Z 1 1 GR OU X 1 Y 15 22 Z 1 1 GR OU Y 23 X 1 5 Z 1 1 GR OU Y 15 X 1 5 Z 1 1 GR OU X 21 Y 15 22 Z 1 1 GR OU X 14 Y 15 22 Z 1 1 GR OU Y 23 X 14 20 Z 1 1 GR OU Y 15 X 14 20 Z 1 1 GR OU X 21 Y 11 14 Z 1 1 GR OU X 16 Y 11 14 Z 1 1 GR OU Y 15 X 16 20 Z 1 1 GR OU Y 11 X 16 20 Z 1 1 GR OU X 21 Y 9 10 Z 1 1 GR OU X 14 Y 9 10 Z 1 1 GR OU Y 11 X 14 20 Z 1 1 GR OU Y 9 X 14 20 Z 1 1 GR OU X 16 Y 11 14 Z 1 1 COL 14 GR OU X 4 Y 11 14 Z 1 1 COL 14 GR OU Y 15 X 4 15 Z 1 1 COL 14 GR OU Y 11 X 4 15 Z 1 1 COL 14 MSG COOLER GEOMETRY msg Press Enter to continue PAUSE;red VEC Z 1 Y 1 28 SH MSG Velocity vectors msg Press Enter to continue pause;vec off;red con tgas z 1 Y 1 28 fil;0.01 msg Temperature contours msg Press Enter to continue pause;con off;red con yn2 z 1 Y 1 28 fil;0.01 msg Nitrogen msg Press Enter to continue pause;con off;red con yo2 z 1 Y 1 28 fil;0.01 msg Oxygen msg Press Enter to continue pause;con off;red con yh2 z 1 Y 1 28 fil;0.01 msg Hydrogen msg Press Enter to continue pause;con off;red con yco z 1 Y 1 28 fil;0.01 msg CO msg Press Enter to continue pause;con off;red con yco2 z 1 Y 1 28 fil;0.01 msg CO2 msg Press Enter to continue pause;con off;red con yh2o z 1 Y 1 28 fil;0.01 msg H2O msg Press Enter to end ENDUSE ************************************************************ * GROUP 1. Run identifiers and other preliminaries. TEXT(Environmental level coke combustion simulation DISPLAY Environmental level coke combustion simulation The packed bed of heat generating materials is cooled by air flow generated by buyoancy. The pressure drop across a packed bed is obtained from Ergun equation. The material tempeartures are also calculated. ENDDIS ================== REAL(TENV,PORI,QDVOL,VVOL); TENV=-40.; PORI=0.8 VVOL=5.2*4.62*2.345 QDVOL=20.E6/VVOL*(1-PORI) REAL(DIAM,LENGTH);DIAM=0.02 LENGTH=DIAM*PORI/(1.-PORI) ************************************************************ * GROUP 2. Time-dependence and related parameters. ************************************************************ * GROUP 3. x-direction grid specification. NX = 25 XULAST = 14.4 XFRAC ( 1) = 4.630E-02 ;XFRAC ( 2) = 9.259E-02 XFRAC ( 3) = 1.389E-01 ;XFRAC ( 4) = 1.649E-01 XFRAC ( 5) = 1.910E-01 ;XFRAC ( 6) = 2.179E-01 XFRAC ( 7) = 2.448E-01 ;XFRAC ( 8) = 2.717E-01 XFRAC ( 9) = 2.986E-01 ;XFRAC ( 10) = 3.255E-01 XFRAC ( 11) = 3.524E-01 ;XFRAC ( 12) = 3.793E-01 XFRAC ( 13) = 4.063E-01 ;XFRAC ( 14) = 4.323E-01 XFRAC ( 15) = 4.583E-01 ;XFRAC ( 16) = 4.972E-01 XFRAC ( 17) = 5.361E-01 ;XFRAC ( 18) = 5.750E-01 XFRAC ( 19) = 6.139E-01 ;XFRAC ( 20) = 6.528E-01 XFRAC ( 21) = 6.838E-01 ;XFRAC ( 22) = 7.406E-01 XFRAC ( 23) = 8.142E-01 ;XFRAC ( 24) = 9.012E-01 XFRAC ( 25) = 1.000E+00 ************************************************************ * GROUP 4. y-direction grid specification. NY = 30 YVLAST = 27.0 YFRAC ( 1) = 6.173E-02 ;YFRAC ( 2) = 1.235E-01 YFRAC ( 3) = 1.852E-01 ;YFRAC ( 4) = 2.022E-01 YFRAC ( 5) = 2.193E-01 ;YFRAC ( 6) = 2.363E-01 YFRAC ( 7) = 2.533E-01 ;YFRAC ( 8) = 2.704E-01 YFRAC ( 9) = 2.778E-01 ;YFRAC ( 10) = 2.852E-01 YFRAC ( 11) = 3.065E-01 ;YFRAC ( 12) = 3.278E-01 YFRAC ( 13) = 3.491E-01 ;YFRAC ( 14) = 3.704E-01 YFRAC ( 15) = 4.028E-01 ;YFRAC ( 16) = 4.352E-01 YFRAC ( 17) = 4.676E-01 ;YFRAC ( 18) = 5.000E-01 YFRAC ( 19) = 5.324E-01 ;YFRAC ( 20) = 5.648E-01 YFRAC ( 21) = 5.972E-01 ;YFRAC ( 22) = 6.296E-01 YFRAC ( 23) = 6.759E-01 ;YFRAC ( 24) = 7.222E-01 YFRAC ( 25) = 7.685E-01 ;YFRAC ( 26) = 8.148E-01 YFRAC ( 27) = 8.611E-01 ;YFRAC ( 28) = 9.074E-01 YFRAC ( 29) = 9.537E-01 ;YFRAC ( 30) = 1.000E+00 * GROUP 7. Variables (including porosities) named, * stored & solved. SOLVE(P1,U1,V1,H1,METL); SOLUTN(P1,Y,Y,Y,N,N,N) STORE(TMP1) STORE(ENUT,EPOR,NPOR,VPOR) ************************************************************ * GROUP 8. Terms (in differential equations) and devices. TERMS(METL,N,N,N,N,Y,N) ************************************************************ * GROUP 9. Properties of the medium (or media). PRESS0=1.0000E+05 * CP1 = Specific heat (J/kg K) REAL(CAP);CAP=996. * TREF1 = Reference temperature (K) REAL(TREF1);TREF1=273. * HREF1 = Reference enthalpy (J/kg) REAL(HREF1);HREF1=CAP*(TREF1+TENV) * VEXP1 = Volume expansivity coefficient (1/K) REAL(VEXP1);VEXP1=3.6720E-03 * Density (kg/m^3) RHO1=1.2200E+00 * Set TMP1 = TREF + H1/CP1 TMP1=GRND2;TMP1A=0.0;TMP1B=1/CAP; CP1=CAP * Prandtl number of the fluid/media PRNDTL(H1)=7.3600E-01 * Laminar kinematic viscosity (m^2/s) ENUL=1.4650E-05 TURMOD(KEMODL) * Turbulent Prandtl number of the fluid/media PRT(H1)=1 ************************************************************ * GROUP 10. Interphase-transfer processes and properties. ************************************************************ * GROUP 11. Initialization of fields of variables, * porosities, etc. CONPOR(0,CELL,1,-20,1,-3,1,1) CONPOR(0,CELL,1,-5,4,10,1,1) CONPOR(0,CELL,1,-3,11,14,1,1) CONPOR(0,CELL,1,-5,15,-22,1,1) CONPOR(0,CELL,-14,-20,15,-22,1,1) CONPOR(0,CELL,-16,-20,11,14,1,1) CONPOR(0,CELL,-14,-20,-9,10,1,1) CONPOR(PORI,VOLUME,4,15,11,14,1,1) CONPOR(PORI,EAST,4,15,11,14,1,1) CONPOR(PORI,NORTH,4,15,11,14,1,1) FIINIT(U1)=0.0 FIINIT(V1)=0.1 FIINIT(H1)=HREF1 FIINIT(KE)=5.0E-02 FIINIT(EP)=2.4573E-01 * ************************************************************ * GROUP 12. Convection and diffusion adjustments ************************************************************ * GROUP 13. Boundary conditions and special sources OUTLET(OUTR,EAST,NX,NX,1,NY,1,NZ,1,1) VALUE(OUTR,U1,SAME) VALUE(OUTR,V1,SAME) VALUE(OUTR,P1,0.) VALUE(OUTR,H1,CAP*(TREF1+TENV)) VALUE(OUTR,KE,SAME) VALUE(OUTR,EP,SAME) OUTLET(OUTL,WEST,1,1,23,30,1,NZ,1,1) VALUE(OUTL,U1,SAME) VALUE(OUTL,V1,SAME) VALUE(OUTL,P1,0.) VALUE(OUTL,H1,CAP*(TREF1+TENV)) VALUE(OUTL,KE,SAME) VALUE(OUTL,EP,SAME) * OUTLET boundary condition, name OUTUP OUTLET(OUTUP,NORTH,1,NX,NY,NY,1,NZ,1,1) VALUE(OUTUP,U1,SAME) VALUE(OUTUP,V1,SAME) VALUE(OUTUP,P1,0.) VALUE(OUTUP,H1,CAP*(TREF1+TENV)) VALUE(OUTUP,KE,SAME) VALUE(OUTUP,EP,SAME) * HEAT-SOURCE boundary condition, name HOTHEAT PATCH(HEAT,VOLUME,4,15,11,14,1,1,1,1) COVAL(HEAT,H1,FIXFLU,QDVOL) COVAL(HEAT,METL,FIXFLU,QDVOL) ** Ergun's resitance law * Linear resistance term PATCH(ERLIN,PHASEM,4,15,11,14,1,1,1,1) COVAL(ERLIN,U1,0.1*ENUL/LENGTH**2,0.0) COVAL(ERLIN,V1,0.1*ENUL/LENGTH**2,0.0) * Quadratic resistance term PATCH(ERQUA,PHASEM,4,15,11,14,1,1,1,1)CO=RG(2)*ABS(U1) COVAL(ERQUA,U1,GRND,0.0) CO=RG(2)*ABS(V1) COVAL(ERQUA,V1,GRND,0.0) * Metal temperature PATCH(METEMP,VOLUME,4,15,11,14,1,1,1,1) VAL=TMP1 COVAL(METEMP,METL,100.,GRND) * GRAVITY boundary condition, name BUOYANCY PATCH(BUOYANCY,PHASEM,1,NX,1,NY,1,1,1,1) COVAL(BUOYANCY,U1,FIXFLU,GRND3) COVAL(BUOYANCY,V1,FIXFLU,GRND3) * Set gravity resolutes BUOYA=0.;BUOYB=-9.8100E+00;BUOYC=0. * Set contants for Boussinesq approximation BUOYD=VEXP1/CAP;BUOYE=HREF1 * GROUP 15. Termination criteria for sweeps and LSWEEP=300 * GROUP 17. Under-relaxation and related devices. REAL(MAXV,MINL,RELX) MAXV=4. MINL=5.7600E-01 RELX=1 RELAX(P1,LINRLX,0.8) RELAX(U1,FALSDT,MINL/MAXV*RELX) RELAX(V1,FALSDT,MINL/MAXV*RELX) RELAX(H1,FALSDT,MINL/MAXV*1.E3) RELAX(KE,FALSDT,MINL/MAXV*RELX/10) RELAX(EP,FALSDT,MINL/MAXV*RELX/10) * GROUP 19. Data communicated by SATELLITE to GROUND NAMSAT=MOSG RG(1)=150.*ENUL/LENGTH**2 RG(2)=0.0175/LENGTH * GROUP 22. Location of spot-value & frequency of * residual printout. IXMON=14; IYMON=13 tstswp=-1 Coal-combustion model. Reactions: C (s) + 0.5 O2 > CO CO + 0.5 O2 > CO2 C(s) + CO2 > 2CO C(s) + H2O > CO + H2 H2 + 0.5 O2 > H2O The numerical values which appear below are:- * the mass fractions of O2 and N2 in air, namely: 0.232 and 0. * the molecular weights of O2, N2, CO2, CO, H2O, H2, - 32.0, 28.0, 44.0, 28.0, 18.0 and 2.0 * the Universal Gas Constant, GASCON: 8.314 * the heat of reaction for C + O2 -> CO2, HCCO2: 3.279 * the heat of reaction for C + 0.5*O2 -> CO , HCCO : 9.208 * the heat of reaction for H2 + 0.5*O2 -> H2O, HHH2O: 1.209 * the specific heat at constant pressure, CP : 1.100 all in SI un CINCL, the mass fraction of C in the coal; HINCL, the mass fraction of H in the fuel; NINCL, the mass fraction of N in the fuel; AINCL, the mass fraction of ash in the fuel. REAL(HINCL,CINCL,NINCL,AINCL) REAL(AIRO2,AIRN2) REAL(MN2,MC,MO2,MH2,MCO,MCO2,MH2O) HINCL=0.05 CINCL=0.95 NINCL=0.0 AINCL=1.-CINCL-HINCL-NINCL AIRO2=0.232 AIRN2=0.768 MN2=28.; MC=12.; MO2=32.; MH2=2.; MCO=28.; MCO2=44.; MH2O=18. REAL(HCCO2,HCCO,HHH2O,HCHX,HCOCO2) HCCO2 =3.279E7 HCCO = 9.208E6 HHH2O = 1.209E6 REAL(FS,BURNRATE, WIN) ** FS is the mass of fuel per unit mass of air/fuel mixture to convert all carbon and oxygen to carbon monoxide. FS=0.232/(0.232 + CINCL*16.0/12.0) ** The heat of combustion per unit mass of co is hcco2 minus hcco the mass of c per unit mass of co, ie 12/28 HCOCO2=(12.0/28.0)*(HCCO2-HCCO) ** The heat of coal combustion per unit mass of carbon HCHX=(CINCL*HCCO2+HINCL*HHH2O)*(HINCL*MH2+CINCL*MC+NINCL*MN2)/MC ** The rate of burning BURNRATE=3. ** FCL - carbon element mass fraction; ** The specific heat at constant pressure, CP =1.100E3 H = CP*T + HCHX*YCHX + HCOCO2*YCO * HHH2*YH2 SOLVE(H11,FCL) REAL(CP,TFUEL,HGIN,TGIN) TGIN = TENV+273. HGIN = CAP*TGIN STORE(HSUB,TGAS,YN2,YH2,YO2,YCO,YCO2,YH2O,RMIX) STORE(FLIM,FRAC,GO,GC,GH,GOFU,GOPA) SOLUTN(FCL,Y,Y,Y,P,P,P) SOLUTN(H11 ,Y,Y,Y,P,P,P) GROUP 8. Terms (in differential equations) & devices TERMS(FCL,N,Y,N,P,P,P) TERMS(H11,N,Y,N,P,P,P) GROUP 9. Properties of the medium (or media) REAL(RHOIN1,WAIR) PRESS0=1.e5 WAIR=29. RHOIN1=PRESS0*WAIR/(8314.*TGIN) GROUP 11. Initialization of variable or porosity fields FIINIT(FCL)=1. GROUP 13. Boundary conditions and special sources ** Inlet Boundaries VALUE(OUTL,FCL, 0.0) VALUE(OUTL,H11, HGIN) VALUE(OUTR,FCL , 0.0) VALUE(OUTR,H11, HGIN) VALUE(OUTUP,FCL, 0.0) VALUE(OUTUP,H11, HGIN) Carbon mass transfer related sources: ------------------------------------ PATCH(CARGAS,VOLUME,1,NX,1,NY,1,NZ,1,1) (1) Transfer of mass leading to increase of gas flow rate: - VPOR is volume fraction of lump coal VAL=:BURNRATE:*(1.-VPOR)*(:FS:-FCL) COVAL(CARGAS,P1,FIXFLU,GRND) (2) Transfer of carbon leading to increase of mixture fraction at the same rate: - CO=1. signifies that mass tarnsfer brings in material which is 100% carbon COVAL(CARGAS,FCL,ONLYMS,1.) (3) Transfer of enthalpy and heat leading to increase of gas enthalpy at the same rate: - Interphase gas temperature is assumed as Tgas. - HSUB = HCOCO2*YCO * HH2*YH2 VAL=:CP:*TGAS+:HCHX:+HSUB COVAL(CARGAS,H11,ONLYMS,GRND) GROUP 15. Termination of sweeps LSWEEP=350 GROUP 16. Termination of iterations LITHYD=10 VARMAX(FCL)=FS;VARMIN(FCL)=0.0 VARMIN(TGAS)=TGIN GROUP 17. Under-relaxation devices RELAX(FCL,FALSDT,0.25) RELAX(H11,FALSDT,0.25) GROUP 23. Field print-out and plot control NPLT=1;NYPRIN=1;NZPRIN=1 NYPRIN=1;IYPRF=1;IYPRL=30 TSTSWP=-1 Coal oxidation is presumed to proceed in two stages, viz: (1) to create CO2 and H2O, and then (2) to create CO and H2, as more fuel is added. The gas composition diagram, taking account of the elemental mass fractions of O, C and H, has got three regions: (1) Region 1 containing O2, CO2 & H2O (2) Region 2 containing CO2, H2O, H2 & CO (3) Region 3 containing H2 & CO. The values of oxygen fraction GO at which the formulae exbibit discontinuities of slope are called:- GOPA, where the oxygen has consumed part of the fuel, so as create CO and H2; and GOFU, where the products of combustion are CO2 and H2O. ** Cell-wise composition parameters -------------------------------- FLIM=:AIRO2:/(:AIRO2:+:CINCL:*:MO2:/:MC:+$ :HINCL:*:MO2:/(2*:MH2:)) GO=:AIRO2:*(1-FCL) GC=:CINCL:*FCL GH=:HINCL:*FCL GOPA=GC*:MO2:/(2*:MC:)/(1-GO+GC*:MO2:/(2*:MC:)+TINY) GOFU=(GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:)/$ (1.-GO+GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:+TINY) FRAC=(GO-GOPA)/(GOFU-GOPA+TINY) ** For all regions --------------- YN2=:NINCL:*FCL+:AIRN2:*(1.-FCL) ** Region 1 -------- YH2O=:HINCL:*FCL*:MH2O:/:MH2: IF(FCL.LE.FLIM) YCO2=:CINCL:*FCL*:MCO2:/:MC: IF(FCL.LE.FLIM) YO2 =:AIRO2:*(1-FCL)-:CINCL:*FCL*:MO2:/:MC:-$ :HINCL:*FCL*:MO2:/(2.*:MH2:) IF(FCL.LE.FLIM) YCO=0.0 IF(FCL.LE.FLIM) YH2=0.0 IF(FCL.LE.FLIM) HSUB=0.0 IF(FCL.LE.FLIM) RMIX=8314.3*(YO2/32.+YH2O/18.+YCO2/44.+YN2/28.) IF(FCL.LE.FLIM) ** Region 2 -------- YH2O=:HINCL:*FCL*:MH2O:/:MH2:*FRAC*(1-GOFU)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YCO2=:CINCL:*FCL*:MCO2:/:MC:*FRAC*(1-GOFU)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YCO=:CINCL:*FCL*:MCO:/:MC:*(1-FRAC)*$ (1-GOPA)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YH2=:HINCL:*FCL*(1-FRAC)*(1-GOPA)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) HSUB=YCO*:HCOCO2:+YH2*:HHH2O: IF(FCL.GT.FLIM.AND.FRAC.GE.0.) RMIX=8314.3*(YH2O/18.+YCO/28.+YCO2/44.+YH2/2.+YN2/28.) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) ** Region 3 -------- YH2O=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YCO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YCO=:AIRO2:*(1-FCL)*2*:MCO:/:MO2: IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YH2=:HINCL:*FCL IF(FCL.GT.FLIM.AND.FRAC.LT.0.) HSUB=YCO*:HCOCO2:+YH2*:HHH2O: IF(FCL.GT.FLIM.AND.FRAC.LT.0.) RMIX=8314.3*(YCO/28.+YH2/2.+YN2/28.) IF(FCL.GT.FLIM.AND.FRAC.LT.0.) ** Calculation of absolute gas temperature -------------------------------------- TGAS=AMAX1(:TGIN:.,(H11-HSUB)/:CAP:.) store(ysum) YSUM=YN2+YO2+YCO+YCO2+YH2O+YH2 store(DEN1) DEN1=1.e5/(RMIX*TGAS+tiny) FIINIT(YO2)=0.232;FIINIT(YN2)=0.768 MAXV=4. MINL=5.7600E-01 RELX=1 RELAX(P1,LINRLX,0.8) RELAX(U1,FALSDT,MINL/MAXV*RELX) RELAX(V1,FALSDT,MINL/MAXV*RELX) RELAX(H1,FALSDT,MINL/MAXV*1.E3) RELAX(KE,FALSDT,MINL/MAXV*RELX/10) RELAX(EP,FALSDT,MINL/MAXV*RELX/10) burnrate=1. dmpstk=t LIBREF=262 STOP