talk=t;run(1,1) PHOTON USE autoplot upause 1 file; phi 5 cl; da 1; yco2; da 1; yo2; da 1; yco; scale; cola 1; col3 2 colf 3 msg msg msg Mass fractions of CO2 - yellow, O2 - blue, msg CO - red ................................more pause; cl; da 1; yh2o; da 1; YH2; scale; col3 1; colf 2 msg msg msg Mass fractions of H2O - blue and H2 - red ...mor pause; cl; da 1; fcl; da 1; YN2; scale; col3 1; colf 2 msg msg msg Mass fractions of N2 - red and msg coal-derived gas - blue ........more pause; cl; da 1; temp; colF 1; msg msg msg Temperature of gas, K .......more pause; cl; da 1; w1; col7 1;scale; msg msg msg Gas velocity, m/s enduse GROUP 1. Run title and other preliminaries TEXT( Ore reduction in a packed bed DISPLAY Ore reduction in a packed bed: One-phase, 1D, one space, coke combustion, mass transfer related ore reduction sources only. ENDDIS Coal-combustion model. Reactions: C (s) + 0.5 O2 > CO CO + 0.5 O2 > CO2 C(s) + CO2 > 2CO C(s) + H2O > CO + H2 H2 + 0.5 O2 > H2O The numerical values which appear below are:- * the mass fractions of O2 and N2 in air, namely: 0.232 and 0. * the molecular weights of O2, N2, CO2, CO, H2O, H2, - 32.0, 28.0, 44.0, 28.0, 18.0 and 2.0 * the Universal Gas Constant, GASCON: 8.314 * the heat of reaction for C + O2 -> CO2, HCCO2: 3.279 * the heat of reaction for C + 0.5*O2 -> CO , HCCO : 9.208 * the heat of reaction for H2 + 0.5*O2 -> H2O, HHH2O: 1.209 * the specific heat at constant pressure, CP : 1.100 all in SI un CINCL, the mass fraction of C in the coal; HINCL, the mass fraction of H in the fuel; NINCL, the mass fraction of N in the fuel; AINCL, the mass fraction of ash in the fuel. REAL(HINCL,CINCL,NINCL,AINCL,GASCON) REAL(AIRO2,AIRN2) REAL(MN2,MC,MO2,MH2,MCO,MCO2,MH2O) GASCON=8.3143e3 HINCL=0.05 CINCL=0.95 NINCL=0.0 AINCL=1.-CINCL-HINCL-NINCL AIRO2=0.232 AIRN2=0.768 MN2=28.; MC=12.; MO2=32.; MH2=2.; MCO=28.; MCO2=44.; MH2O=18. REAL(HCCO2,HCCO,HHH2O,HCHX,HCOCO2) HCCO2 =3.279E7 HCCO = 9.208E6 HHH2O = 1.209E6 REAL(FS,BURNRATE, WIN) ** FS is the mass of fuel per unit mass of air/fuel mixture to convert all carbon and oxygen to carbon monoxide. FS=0.232/(0.232 + CINCL*16.0/12.0) ** The heat of combustion per unit mass of co is hcco2 minus hcco the mass of c per unit mass of co, ie 12/28 HCOCO2=(12.0/28.0)*(HCCO2-HCCO) ** The heat of coal combustion per unit mass of carbon HCHX=(CINCL*HCCO2+HINCL*HHH2O)*(HINCL*MH2+CINCL*MC+NINCL*MN2)/MC ** The rate of burning BURNRATE=3. ** The inlet gas velocity WIN=5. GROUP 4. Y-direction grid specification NY=1;GRDPWR(Y,NY,NY,1.0) GROUP 5. Z-direction grid specification NZ=10;GRDPWR(Z,NZ,10.,1.0) GROUP 7. Variables stored, solved & named ** FCL - carbon element mass fraction; ** The specific heat at constant pressure, CP =1.100E3 H = CP*T + HCHX*YCHX + HCOCO2*YCO * HHH2*YH2 SOLVE(P1,W1,H1,FCL) REAL(CP,TFUEL,HGIN,TGIN) TGIN = 350.0 CP= 1100. HGIN = CP*TGIN STORE(RMIX,HSUB,TEMP,YN2,YH2,YO2,YCO,YCO2,YH2O) STORE(DEN1,FLIM,FRAC,GO,GC,GH,GOFU,GOPA) SOLUTN(P1 ,Y,Y,Y,P,P,P) SOLUTN(FCL,Y,Y,Y,P,P,P) SOLUTN(H1 ,Y,Y,Y,P,P,P) GROUP 8. Terms (in differential equations) & devices TERMS(FCL,N,Y,N,P,P,P) TERMS(H1 ,N,Y,N,P,P,P) GROUP 9. Properties of the medium (or media) REAL(RHOIN1,WAIR) PRESS0=1.e5 WAIR=32. RHOIN1=PRESS0*WAIR/(8314.*TGIN) RHO1=GRNDDEN1=PRESS0/(RMIX*TEMP) DEN1=AMIN1(VARMAX(140),AMAX1(0.0,DEN1,VARMIN(140))) ENUL=0.0 GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=1. STORE(VPOR) FIINIT(VPOR)=0.25 FIINIT(FCL)=1. FIINIT(P1)=1.3E-4 GROUP 13. Boundary conditions and special sources ** Inlet Boundaries INLET(INLET,LOW,1,NX,1,NY,1,1,1,1) VALUE(INLET,P1 , RHOIN1*WIN) VALUE(INLET,W1 , WIN) VALUE(INLET,FCL , 0.0) VALUE(INLET,H1 , HGIN) ** Frictional momentum transfer PATCH(FRICTION,VOLUME,1,NX,1,NY,1,NZ,1,1) COVAL(FRICTION,W1,100.,0.0) **Outlet boundary PATCH(OUTLET,HIGH,1,NX,1,NY,NZ,NZ,1,1) COVAL(OUTLET,P1,fixp,0.0) Carbon mass transfer related sources: ------------------------------------ PATCH(CARGAS,CELL,1,NX,1,NY,1,NZ,1,1) (1) Transfer of mass leading to increase of gas flow rate: - VPOR is volume fraction of lump coal VAL=:BURNRATE:*(1.-VPOR)*(:FS:-FCL) COVAL(CARGAS,P1,FIXFLU,GRND) (2) Transfer of carbon leading to increase of mixture fraction at the same rate: - CO=1. signifies that mass tarnsfer brings in material which is 100% carbon COVAL(CARGAS,FCL,ONLYMS,1.) (3) Transfer of enthalpy and heat leading to increse of gas enthalpy at the same rate: - Interphase gas temperature is assumed as TEMP. - HSUB = HCOCO2*YCO * HH2*YH2 VAL=:CP:*TEMP+:HCHX:+HSUB COVAL(CARGAS,H1,ONLYMS,GRND) Ore reduction mass transfer related sources: -------------------------------------------- REAL(AGS,HGS,ORE) AGS=150. HGS=20. ORE=0.6 (1) Transfer of mass leading to increase of gas flow rate: m31 = Ags.(Rco2-Rco), kg/m^3/s PATCH(OREGAS,VOLUME,1,NX,1,NY,1,NZ,1,1) VAL=0.01*150.*((1.+84./160.)*132./244.-3.*28./160.) COVAL(OREGAS,P1,FIXFLU,GRND) (2) Transfer of carbon element leading to decrease of coal-derived gas mass fraction: Sfcl,co = -Rco.Mc/Mco.FCL PATCH(CO4FCL,VOLUME,1,NX,1,NY,1,NZ,1,1) CO=3.*:HGS:*YCO*:ORE:/:CP:*:AGS:*28./160.*12./28. COVAL(CO4FCL,FCL,GRND,0.) (2) Transfer of carbon element leading to increase of coal-derived gas mass fraction: Sfcl,co2 = Rco2.Mc/Mco2.(FS-FCL) PATCH(COO4FCL,VOLUME,1,NX,1,NY,1,NZ,1,1) CO=20.*YCO*0.6/1100.*150.*(1+84./160.)*132./244.*12./28. COVAL(COO4FCL,FCL,GRND,FS) In which, Rco = 3.Ro.Ags.28/160 Ro = hgs.Yco.Yore/Cpgas Rco2= Ro.Ags.(1+84/160).132/244 To be considered, - the mass transfer related enthalpy and heat transfer. GROUP 15. Termination of sweeps LSWEEP=350 RESFAC=0.0001 GROUP 16. Termination of iterations LITHYD=10 VARMAX(FCL)=1.0;VARMIN(FCL)=0.0 VARMIN(TEMP)=TGIN;VARMAX(TEMP)=3000. VARMIN(DEN1)=0.001;VARMAX(DEN1)=3. GROUP 17. Under-relaxation devices RELAX(P1,LINRLX,0.25) RELAX(W1,FALSDT,0.025) RELAX(V1,FALSDT,0.025) RELAX(FCL,FALSDT,0.025) RELAX(H1,FALSDT,0.025) RELAX(DEN1,LINRLX,0.2) GROUP 22. Monitor print-out IZMON=NZ-1;IYMON=NY-1;UWATCH=T GROUP 23. Field print-out and plot control NPLT=1;NYPRIN=1;NZPRIN=1 NYPRIN=1;IYPRF=1;IYPRL=30 TSTSWP=-1 namsat=mosg Coal oxidation is presumed to proceed in two stages, viz: (1) to create CO2 and H2O, and then (2) to create CO and H2, as more fuel is added. The gas composition diagram, taking account of the elemental mass fractions of O, C and H, has got three regions: (1) Region 1 containing O2, CO2 & H2O (2) Region 2 containing CO2, H2O, H2 & CO (3) Region 3 containing H2 & CO. The values of oxygen fraction GO at which the formulae exbibit discontinuities of slope are called:- GOPA, where the oxygen has consumed part of the fuel, so as create CO and H2; and GOFU, where the products of combustion are CO2 and H2O. ** Cell-wise composition parameters -------------------------------- FLIM=:AIRO2:/(:AIRO2:+:CINCL:*:MO2:/:MC:+$ :HINCL:*:MO2:/(2*:MH2:)) GO=:AIRO2:*(1-FCL) GC=:CINCL:*FCL GH=:HINCL:*FCL GOPA=GC*:MO2:/(2*:MC:)/(1-GO+GC*:MO2:/(2*:MC:)+TINY) GOFU=(GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:)/$ (1.-GO+GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:+TINY) FRAC=(GO-GOPA)/(GOFU-GOPA+TINY) ** For all regions --------------- YN2=:NINCL:*FCL+:AIRN2:*(1.-FCL) ** Region 1 -------- YH2O=:HINCL:*FCL*:MH2O:/:MH2: IF(FCL.LE.FLIM) YCO2=:CINCL:*FCL*:MCO2:/:MC: IF(FCL.LE.FLIM) YO2 =:AIRO2:*(1-FCL)-:CINCL:*FCL*:MO2:/:MC:-$ :HINCL:*FCL*:MO2:/(2.*:MH2:) IF(FCL.LE.FLIM) YCO=0.0 IF(FCL.LE.FLIM) YH2=0.0 IF(FCL.LE.FLIM) ** Region 2 -------- YH2O=:HINCL:*FCL*:MH2O:/:MH2:*FRAC*(1-GOFU)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YCO2=:CINCL:*FCL*:MCO2:/:MC:*FRAC*(1-GOFU)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YCO=:CINCL:*FCL*:MCO:/:MC:*(1-FRAC)*$ (1-GOPA)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YH2=:HINCL:*FCL*(1-FRAC)*(1-GOPA)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) ** Region 3 -------- YH2O=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YCO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YCO=:AIRO2:*(1-FCL)*2*:MCO:/:MO2: IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YH2=:HINCL:*FCL IF(FCL.GT.FLIM.AND.FRAC.LT.0.) ******************************* YH2 =AMAX1(0.,YH2 ) YH2O=AMAX1(0.,YH2O) YCO =AMAX1(0.,YCO ) YCO2=AMAX1(0.,YCO2) YN2 =AMAX1(0.,YN2 ) YO2 =AMAX1(0.,YO2 ) HSUB=0.0 IF(FCL.LE.FLIM) RMIX=:GASCON:*(YO2/:MO2:+YH2O/:MH2O:+YCO2/:MCO2:+$ YN2/:MN2:) IF(FCL.LE.FLIM) HSUB=YCO*:HCOCO2:+YH2*:HHH2O: IF(FCL.GT.FLIM.AND.FRAC.GE.0.) RMIX=:GASCON:*(YH2O/:MH2O:+YCO/:MCO:+YCO2/:MCO2:+$ YH2/:MH2:+YN2/:MN2:) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) HSUB=YCO*:HCOCO2:+YH2*:HHH2O: IF(FCL.GT.FLIM.AND.FRAC.LT.0.) RMIX=:GASCON:*(YCO/:MCO:+YH2/:MH2:+YN2/:MN2:) IF(FCL.GT.FLIM.AND.FRAC.LT.0.) ** Calculation of absolute gas temperature -------------------------------------- TEMP=(H1-HSUB)/:CP: TEMP=AMIN1(VARMAX(147),AMAX1(100.,TEMP,VARMIN(147))) store(ysum) YSUM=YN2+YO2+YCO+YCO2+YH2O+YH2 dmpstk=t LIBREF=104 STOP