talk=t;run(1,1) PHOTON USE autoplot upause 1 file; phi 5 cl; da 1; yco2; da 1; yo2; da 1; yco; scale; cola 1; col3 2 colf 3 msg msg msg Mass fractions of CO2 - yellow, O2 - blue, msg CO - red ................................more pause; cl; da 1; yh2o; da 1; YH2; scale; col3 1; colf 2 msg msg msg Mass fractions of H2O - blue and H2 - red ...mor pause; cl; da 1; fcl; da 1; YN2; scale; col3 1; colf 2 msg msg msg Mass fractions of N2 - red and msg coal-derived gas - blue ........more pause; cl; da 1; temp; colF 1; msg msg msg Temperature of gas, K .......more pause; cl; da 1; w1; col7 1;scale; msg msg msg Gas velocity, m/s enduse GROUP 1. Run title and other preliminaries TEXT(Combustion of packed bed of coke DISPLAY Air flow through combustion of coke packed bed: One-phase, 1D, one space. ENDDIS REAL(HINCL,CINCL,NINCL,GASCON) REAL(AIRO2,AIRN2) REAL(MN2,MC,MO2,MH2,MCO,MCO2,MH2O) REAL(FS,BURNRATE, WIN) REAL(HCCO2,HCCO,HHH2O,HCHX,HCOCO2) REAL(CP,HGIN,TGIN) REAL(PORBED) REAL(RHOIN1,WAIR) Operating data: ============== Blasting gas velocity, m/s WIN=5. Blasting gas temperature and enthalpy: TGIN = 350.0 Gas and coal composition: AIRO2=0.232; AIRN2=0.768; HINCL=0.05; CINCL=0.9 NINCL=1.-CINCL-HINCL The estimated rate of coal burning, kg/s BURNRATE=1. Bed porosity PORBED=0.25 Thermodynamics ============== Gas constant: GASCON=8.3143e3 Molecular masses: MN2=28.; MC=12.; MO2=32.; MH2=2.; MCO=28.; MCO2=44.; MH2O=18. Specific heats: CP=1100. HGIN=CP*TGIN Heats of combustion: HCCO2=3.279E7; HCCO=9.208E6; HHH2O=120.9E6 HCOCO2=(12.0/28.0)*(HCCO2-HCCO) HCHX=CINCL*HCCO2+HINCL*HHH2O Carbon saturation mixture fraction: FS=0.232/(0.232 + CINCL*16.0/12.0) Main simulation settings ======================== GROUP 4. Y-direction grid specification NY=1;GRDPWR(Y,NY,NY,1.0) GROUP 5. Z-direction grid specification NZ=10;GRDPWR(Z,NZ,10.,1.0) GROUP 7. Variables stored, solved & named SOLVE(P1,W1,H1,FCL) STORE(RMIX,HSUB,TEMP,YN2,YH2,YO2,YCO,YCO2,YH2O,YSUM) STORE(DEN1,FLIM,FRAC,GO,GC,GH,GOFU,GOPA,RO,RFE,RCO,RCO2) SOLUTN(P1 ,Y,Y,Y,P,P,P);SOLUTN(FCL ,Y,Y,Y,P,P,P) SOLUTN(H1 ,Y,Y,Y,P,P,P) GROUP 8. Terms (in differential equations) & devices TERMS(FCL ,N,Y,N,P,P,P);TERMS(H1 ,N,Y,N,P,P,P) GROUP 9. Properties of the medium (or media) PRESS0=1.e5 ;WAIR=28.;RHOIN1=PRESS0*WAIR/(8314.*TGIN) RHO1=GRNDDEN1=PRESS0/(RMIX*TEMP) DEN1=AMIN1(VARMAX(139),AMAX1(0.0,DEN1,VARMIN(139))) GROUP 11. Initialization of variable or porosity fields STORE(VPOR,HPOR) FIINIT(W1)=1.; FIINIT(VPOR)=PORBED;FIINIT(FCL)=1. GROUP 13. Boundary conditions and special sources ** Inlet Boundaries INLET(INLET,LOW,1,NX,1,NY,1,1,1,1) VALUE(INLET,P1 , RHOIN1*WIN); VALUE(INLET,W1 , WIN) VALUE(INLET,FCL , 0.0) ; VALUE(INLET,H1 , HGIN) ** Frictional momentum transfer PATCH(FRICTION,VOLUME,1,NX,1,NY,1,NZ,1,1) COVAL(FRICTION,W1,100.,0.0) **Outlet boundary PATCH(OUTLET,HIGH,1,NX,1,NY,NZ,NZ,1,1) COVAL(OUTLET,P1,fixp,0.0) GROUP 15. Termination of sweeps LSWEEP=350; RESFAC=0.0001 GROUP 16. Termination of iterations LITHYD=10;VARMAX(FCL)=1.0;VARMIN(FCL)=0.0 VARMIN(TEMP)=TGIN;VARMAX(TEMP)=3000. VARMIN(DEN1)=0.001;VARMAX(DEN1)=3. GROUP 17. Under-relaxation devices RELAX(P1,LINRLX,0.25);RELAX(W1,FALSDT,0.025) RELAX(V1,FALSDT,0.025);RELAX(FCL,FALSDT,0.025) RELAX(H1,FALSDT,0.025);RELAX(DEN1,LINRLX,0.2) GROUP 22. Monitor print-out IZMON=NZ-1;IYMON=NY-1;UWATCH=T GROUP 23. Field print-out and plot control NPLT=1;NYPRIN=1;NZPRIN=1;NYPRIN=1;IYPRF=1;IYPRL=30;TSTSWP=-1 namsat=mosg ============= End of main settings ============ Model settings ============== Sub-model 1: Carbon oxidation ------------------------------ Reactions: C (s) + 0.5 O2 > CO CO + 0.5 O2 > CO2 C(s) + CO2 > 2CO C(s) + H2O > CO + H2 H2 + 0.5 O2 > H2O (1) Gas mixture composition parameters FLIM=:AIRO2:/(:AIRO2:+:CINCL:*:MO2:/:MC:+$ :HINCL:*:MO2:/(2*:MH2:)) GO=:AIRO2:*(1-FCL) GC=:CINCL:*FCL GH=:HINCL:*FCL GOPA=GC*:MO2:/(2*:MC:)/(1-GO+GC*:MO2:/(2*:MC:)+TINY) GOFU=(GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:)/$ (1.-GO+GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:+TINY) FRAC=(GO-GOPA)/(GOFU-GOPA+TINY) (2) Mass fraction of nytrogen YN2=:NINCL:*FCL+:AIRN2:*(1.-FCL) (3) ** Region 1** containing O2, CO2 & H2O YH2O=:HINCL:*FCL*:MH2O:/:MH2: IF(FCL.LE.FLIM) YCO2=:CINCL:*FCL*:MCO2:/:MC: IF(FCL.LE.FLIM) YO2 =:AIRO2:*(1-FCL)-:CINCL:*FCL*:MO2:/:MC:-$ :HINCL:*FCL*:MO2:/(2.*:MH2:) IF(FCL.LE.FLIM) YCO=0.0 IF(FCL.LE.FLIM) YH2=0.0 IF(FCL.LE.FLIM) (4) ** Region 2 ** containing CO2, H2O, H2 & CO YH2O=:HINCL:*FCL*:MH2O:/:MH2:*FRAC*(1-GOFU)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YCO2=:CINCL:*FCL*:MCO2:/:MC:*FRAC*(1-GOFU)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YCO=:CINCL:*FCL*:MCO:/:MC:*(1-FRAC)*$ (1-GOPA)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) YH2=:HINCL:*FCL*(1-FRAC)*(1-GOPA)/(1-GO+TINY) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) (5) ** Region 3 ** containing H2 & CO. YH2O=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YCO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YO2=0.0 IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YCO=:AIRO2:*(1-FCL)*2*:MCO:/:MO2: IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YH2=:HINCL:*FCL IF(FCL.GT.FLIM.AND.FRAC.LT.0.) YH2=AMAX1(0.,YH2) YH2O=AMAX1(0.,YH2O) YCO=AMAX1(0.,YCO) YCO2=AMAX1(0.,YCO2) YN2=AMAX1(0.,YN2) YO2=AMAX1(0.,YO2) HSUB=0.0 IF(FCL.LE.FLIM) RMIX=:GASCON:*(YO2/:MO2:+YH2O/:MH2O:+YCO2/:MCO2:+$ YN2/:MN2:) IF(FCL.LE.FLIM) HSUB=YCO*:HCOCO2:+YH2*:HHH2O: IF(FCL.GT.FLIM.AND.FRAC.GE.0.) RMIX=:GASCON:*(YH2O/:MH2O:+YCO/:MCO:+YCO2/:MCO2:+$ YH2/:MH2:+YN2/:MN2:) IF(FCL.GT.FLIM.AND.FRAC.GE.0.) HSUB=YCO*:HCOCO2:+YH2*:HHH2O: IF(FCL.GT.FLIM.AND.FRAC.LT.0.) RMIX=:GASCON:*(YCO/:MCO:+YH2/:MH2:+YN2/:MN2:) IF(FCL.GT.FLIM.AND.FRAC.LT.0.) ** Deduce the gas temperature from enthalpy TEMP=(H1-HSUB)/:CP: TEMP=AMIN1(VARMAX(147),AMAX1(100.,TEMP,VARMIN(147))) ** Check for the sum of mass fractions YSUM=YN2+YO2+YCO+YCO2+YH2O+YH2 Interphase transport. -------------------- Coke carbon mass transfer and related sources. ---------------------------------------------- PATCH(car2gas,VOLUME,1,NX,1,NY,1,NZ,1,1) (1) Transfer of mass leading to increase of gas flow rate: m31c = const.R2.(fsat - fcl), kg/s/m^3 (1 - VPOR) is volume fraction of lump solid VAL=:BURNRATE:*(1.-VPOR)*(:FS:-FCL) COVAL(car2gas,P1,FIXFLU,GRND) (2) Transfer of carbon leading to increase of mixture fraction at the same rate: Sfcl = m31c.(1-fcl), kg/s/m^3 - COF=1. signifies that mass transfer brings in material which is 100% carbon COVAL(car2gas,FCL,ONLYMS,1.) (3) Transfer of enthalpy and heat leading to increase of gas enthalpy at the same rate: Shgas = m31c.(hint-hgas), W/m^3 - Interphase gas temperature is assumed as TEMP. - HSUB = HCOCO2*YCO * HH2*YH2 VAL=:CP:*TEMP+:HCHX: + HSUB COVAL(car2gas,H1,ONLYMS,GRND) STOP