PHOTON USE p;;;;; gr ou z 1 1 gr ou y m z 1 1;gr ou z 2;gr ou x 1 z 1 1 ;gr ou x m z 1 1 gr ou y m z 2 2;gr ou z 3;gr ou x 1 z 2 2 ;gr ou x m z 2 2 gr ou y m z 3 3;gr ou z 4;gr ou x 1 z 3 3 ;gr ou x m z 3 3 gr ou y m z 4 4;gr ou z 5;gr ou x 1 z 4 4 ;gr ou x m z 4 4 vec z 1 sh msg msg In slab of IZ=1 the flow is 45 degree msg from right bottom corner. msg pause vec off;con off;red vec z 2 sh msg msg In slab IZ=2 the flow is a solid body msg counter clockwise rotation. msg pause vec off;con off;red con h1 z 3 fil;.001 vec z 3 sh msg msg In slab IZ=3 the flow is the superposition msg of those in slabs 1 and 2. msg msg The source dispersion plume is as shown. msg msg Hit Enter to get the result of convection msg fluxes transformation. pause vec off;con off;red con h1 z 4 fil;.001 vec z 4 sh msg MSG msg In slab IZ=4 the dispersion is exactly the same as msg before in spite of background flow being in opposite msg direction. ENDUSE >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> DISPLAY The four problems are arranged in four slab cartesian box. Each slab is devoted to the particular problem. The PLANTing of initial velocity fields, manipulation with them and the alteration of convection fluxes by add-extra-velocity option are demonstrated. ENDDIS PLANT information : * Data input groups used: 8, 11 * Ground groups planted : 1, 8-1, 8-3, 11 * Headings used : INIT??, SCUF01, SCVF01 * Functions used : None * Commands used : IF, REGION <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< TEXT( Alteration of convection fluxes GROUP 3. X-direction grid specification GRDPWR(x,20,20.,1.0) GROUP 4. Y-direction grid specification GRDPWR(Y,20,20.,1.0) GROUP 5. Z-direction grid specification GRDPWR(Z,4,4.,1.0) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The provision is made above for cartesian box to have 4 slabs. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GROUP 7. Variables stored, solved & named SOLVE(H1) STORE(U1,V1,W1,HPOR) GROUP 8. Terms (in differential equations) & devices TERMS(H1,N,Y,Y,Y,Y,Y) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The convection -diffusion transport of scalar will be considered here. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GROUP 9. Properties of the medium (or media) ENUL=1.e-04 GROUP 11. Initialization of variable or porosity fields INIADD=F FIINIT(HPOR)=0.0 >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The nulification, by above line, of high face porosities provides the independency of the slab sub-domains. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< FIINIT(V1)=5.0;FIINIT(U1)=-5.0 >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> This set of initialisations make the 45 degree flow of 5 m/s from south-east edge of the domain. It will be maintained as 1st slab velocity field. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTBEGIN PATCH(INITZ2,INIVAL,1,NX,1,NY,2,2,1,1)VAL= -(YG2D-15.) COVAL(INITZ2,U1,zero,GRND) VAL= XG2D-15. COVAL(INITZ2,V1,zero,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The velocity field in the second slab is initialised as solid body rotation. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PATCH(INITZ3,INIVAL,1,NX,1,NY,3,3,1,1) VAL= U1[,,1]+U1[,,2]+YG2D COVAL(INITZ3,U1,zero,GRND) VAL= V1[,,1]+V1[,,2]-XG2D COVAL(INITZ3,V1,zero,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The velocity field for the third sub-domain, IZ=3, is the superposition of the velocity components in two previous slabs and the cell node coordinates. It results in 45 degree flow of 10 m/s from north-west edge of the domain. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< NAMSAT=MOSG U1AD=GRND VELAD=U1[,,2]+YG2D REGION(,NX-1) /IZ.EQ.4 V1AD=GRND VELAD=V1[,,2]-XG2D REGION(,,,NY-1) IF(IZ.EQ.4) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Although, the velocity field at the fourth slab is the same as for first one, the add-extra-velocity option is activated as above pointers tell. The extra velocities added to the main velocity components alters the convection fluxes to be equal to ones at third slab. The expected distribution of convected property H1 should be identical to the one at IZ=3. Please note the differences in REGION commands. They are attributed to the staggered nature of velocity nodes and the usage of either switch or IF command to limit the Z-direction extent of velocity alterations. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND GROUP 13. Boundary conditions and special sources ** Fix the scalar value at the slab centre PATCH(FIXSOR,CELL,nx/2,nx/2,NY/2,NY/2,3,4,1,1) COVAL(FIXSOR,H1,FIXVAL,1.0) GROUP 16. Termination of iterations LSWEEP=10 GROUP 22. Spot-value print-out IYMON=5;IXMON=5 GROUP 23. Field print-out and plot control NXPRIN=1;NYPRIN=1;TSTSWP=-1 dmpstk=t DISTIL=T EX(U1)=6.563E+00; EX(V1)=6.563E+00; EX(W1)=1.000E-10 EX(H1)=2.162E-02; EX(HPOR)=1.000E-11 LIBREF=621 STOP