PHOTON USE p;;;;;; *rot z ang 90 set prop off do kk=1,4 gr ou z kk gr ou z kk x 4 8 y 1 5 enddo msg If temperature is not being computed in this case, enter / msg in answer to the next question about the required variable msg msg temperature do kk=1,4 con tem1 z kk fi;0.001 gr ou z kk gr ou z kk x 4 8 y 1 5 enddo pause;con off cl;red msg y-direction strain do kk=1,4 con epsy z kk fi;0.001 gr ou z kk gr ou z kk x 4 8 y 1 5 enddo pause;con off;red msg x-direction strain do kk=1,4 con epsx z kk fi;0.001 gr ou z kk gr ou z kk x 4 8 y 1 5 enddo pause;con off;red msg y-direction stress do kk=1,4 con stry z kk fi;0.001 gr ou z kk gr ou z kk x 4 8 y 1 5 enddo pause;con off;red msg x-direction stress do kk=1,4 con strx z kk fi;0.001 gr ou z kk gr ou z kk x 4 8 y 1 5 enddo pause;con off;red msg displacement and velocity vectors set prop on * set vec ref 2 do kk=1,4 vec z kk sh set prop off * set vec ref 25 vec z kk x 4 8 y 1 5 sh gr ou z kk gr ou z kk x 4 8 y 1 5 enddo pause;vec cl red set prop on do kk=1,4 * set vec ref 2 vec z kk sh enddo set prop off do kk=1,4 con p1 z kk 1 5 x 4 8 fil; 0.001 enddo msg 'Pressure' variable in the solid ENDUSE >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> DISPLAY STRESBOX : a collection of examples of PLANT features for stress-in-solid option. This 3D domain comprises four variants ( one for each Z-slab) of the problem of thermal expansion of solid block placed in the cold stream: IZ=1 contains simple rectangular block; IZ=2 as above but with automatic implementation of boundary conditions; IZ=3 staircase cutted piece of the above and IZ=4 has got the external pressure loaded block. Three first three problems have got the mathematical statements and analitical solution for solid displacements shown below. ENDDIS PLANT information : * Data input groups used: 13 * Ground groups planted : 13 * Headings used : SORC?? * Functions used : SISBC * Commands used : None CASE STUDY: Thermal expansion of the uniform temperature slab with WEST and SOUTH constrained walls. ny =0.0 1 NB c+-------------------+ o|///////////////////| n|///////////////////| s|///////////////////| t|//////// //////////| WB r|////// T=1 ////////|EB nx =0.0 a|//////// //////////| i|///////////////////| n|///////////////////| t+-c-o-n-s-t-r-a-i-n-+ X = 0 SB 5.0 Solid properties ================ Young's modulus, E = 1.0 Puasson ratio, P = 1/3 Thermoexpansion coefficient, alfa = 1.0 Solid displacement equations ============================ d2dxx.u + d2dyy.u - ddx.p = 0 d2dxx.v + d2dyy.v - ddy.p = 0 ddx.u + ddy.v = -p/3 + 8/3 T T = const Solid boundary conditions ========================= LB : ddx.u=0.333 (4 (T + nx ) + p) ddx.v=-ddy.u p= 2 (T - nx) - 1.5 ddy.v HB : u=0.0 ddx.v=0.0 SB : v=0.0 ddy.u=0.0 NB : ddy.v=0.333 (4 (T + ny) + p) ddy.u=-ddx.v p= 2 (T - ny) - 1.5 ddx.u Analitical solution : ===================== p = -1.3333 (ny + nx ) u = (1.333 alfa T + 0.889 nx - 0.4444 ny ) x v = (1.333 alfa T + 0.889 ny - 0.4444 nx ) y Test case ========= Uniform heating. Cartesian geometry. Uniform grid. Fixed stiffness = 1.0 N/m**2 Fixed expansivity = 1.0 Fixed solid temp. = 1.0 k Poisson ratio = 0.3333 Material constrained at east x Zero normal stress apllied to material at north y begin Displacements of solid in x-direction should be: IX 3 4 5 6 7 U1 0.000E+00 1.33333 2.66667 4.0000 5.33333 Displacements of solid in y-direction should be: IY 1 2 3 4 5 V1 1.33333 2.66667 4.00000 5.333333 6.666666 end <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< TEXT(2dxy uniform heating. ** Declaration BOOLEAN(CALSTR) INTEGER(IYNORT,IXWES,IXEA,IXFIX) REAL(WIN,POISSN,TIN,TBODY) REAL(EXCOLI,EXCOC1,EXCOC2,STIFFN,STIFC1,STIFC2,DSTRSE,DSTRSN,DSTRSW) READQ1=T STRA=T;CALSTR=T ** Setting defaults * Inlet velocity, inlet and body temperatures WIN=1.0;TIN=0.0;TBODY=1.0 * Constant linear thermal-expansion coefficient, excoli > 0 EXCOLI=1.e-05 * Constant Young's modulus (stiffness) STIFFN=1.e5 * Consant Poiison ratio POISSN= 0.3333 * Direct stresses on high, north and low surfaces DSTRSE=0.0 DSTRSN=0.0 DSTRSW=0.0 ** Grid settings NZ=4 IYNORT=5;NY=8;IXWES=4;NX=10;IXEA=NX-2;IXFIX=IXWES-1 ZWLAST=NZ YVLAST=NY ; XULAST=NX + GRDPWR(X,NX,XULAST,1.0) + GRDPWR(Y,NY,YVLAST,1.0) + GRDPWR(Z,NZ,ZWLAST,1.0) ** Solution data * Solve for P1 by whole-field method SOLUTN(P1,Y,Y,Y,N,N,N) SOLVE(V1);SOLUTN(V1,Y,Y,N,N,N,Y) SOLVE(U1);SOLUTN(U1,Y,Y,N,N,N,Y) SOLVE(TEM1);SOLUTN(TEM1,Y,Y,Y,N,N,Y) * Store variables STORE(W1) STORE(HPOR,PRPS,MARK) OUTPUT(PRPS,N,N,N,N,N,N) ISOLX=0;ISOLY=0;ISOLZ=0 * Terms for temperature TERMS(TEM1,N,Y,Y,Y,Y,Y) ** GROUP 9. Properties of the medium (or media). ;ENUL=0.01 PRNDTL(TEM1)=CONDFILE ** GROUP 11. Initialization of fields of variables INIADD=F FIINIT(P1)=1.0;FIINIT(U1)=0.0;FIINIT(V1)=0.0;FIINIT(W1)=0.0 FIINIT(HPOR,MARK)=0.0 * working fluid is air FIINIT(PRPS)=0.0 * Initialize Temperature and density (to air density) Field FIINIT(TEM1)=TIN ** GROUP 13. Boundary conditions and special sources * inlet boundary condition, name INLET (at WEST) PATCH(INLET,WEST,1,1,1,IYNORT,1,NZ,1,LSTEP) COVAL(INLET,P1,FIXFLU,1.2*WIN);COVAL(INLET,U1,ONLYMS,WIN) COVAL(INLET,TEM1,ONLYMS,TIN) * outlet boundary condition, name EXIT (at EAST) PATCH(EXIT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP) COVAL(EXIT,P1,1.0,0.0) COVAL(EXIT,TEM1,ONLYMS,SAME) * wall boundary conditions on north, south, low and high walls PATCH(NSIDE,NWALL,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(NSIDE,U1,1.0,0.0) PATCH(SSIDE,SWALL,IXWES,IXEA,IYNORT+1,IYNORT+1,1,NZ,1,LSTEP) COVAL(SSIDE,U1,1.0,0.0) + PATCH(ESIDE,WWALL,IXEA+1,IXEA+1,1,IYNORT,1,NZ,1,LSTEP) + COVAL(ESIDE,V1,1.0,0.0) + PATCH(WSIDE,EWALL,IXFIX,IXFIX,1,IYNORT,1,NZ,1,LSTEP) + COVAL(WSIDE,V1,1.0,0.0) ** Once-for-all-slabs settings * Body properties are those of steel for rectangular blocks at IZ=1 and 2. PATCH(BODZ12,INIVAL,IXWES,IXEA,1,IYNORT,1,2,1,1) INIT(BODZ12,PRPS,0.0,111.0) * Body properties and mark values are those of steel for staircase blocks at IZ=3. PATCH(BODY1,INIVAL,4,8,1,1,1,NZ,1,1) INIT(BODY1,PRPS,0.0,111.0) INIT(BODY1,MARK,0.0,111.0) PATCH(BODY2,INIVAL,4,8,2,2,1,NZ,1,1) INIT(BODY2,PRPS,0.0,111.0) INIT(BODY2,MARK,0.0,111.0) PATCH(BODY3,INIVAL,4,6,3,3,1,NZ,1,1) INIT(BODY3,PRPS,0.0,111.0) INIT(BODY3,MARK,0.0,111.0) PATCH(BODY4,INIVAL,4,5,4,4,1,NZ,1,1) INIT(BODY4,PRPS,0.0,111.0) INIT(BODY4,MARK,0.0,111.0) PATCH(BODY5,INIVAL,4,5,5,5,1,NZ,1,1) INIT(BODY5,MARK,0.0,111.0) INIT(BODY5,PRPS,0.0,111.0) * Body properties are those of steel for rectangular block at IZ=4. PATCH(BODZ4,INIVAL,IXWES,IXEA,1,IYNORT,NZ,NZ,1,1) INIT(BODZ4,PRPS,0.0,111.0) * Heat-source boundary conditions PATCH(HOT12,CELL,IXWES,IXEA,1,IYNORT,1,2,1,LSTEP) COVAL(HOT12,TEM1,FIXVAL,TBODY) PATCH(HOT4,CELL,IXWES,IXEA,1,IYNORT,NZ,NZ,1,LSTEP) COVAL(HOT4,TEM1,FIXVAL,TBODY) ** Once-for-three-slabs settings * fix displacement at ix=IXFIX to zero PATCH(FIXED,EAST,IXFIX,IXFIX,1,IYNORT,1,3,1,LSTEP) COVAL(FIXED,U1,FIXVAL,0.0) ** Case 1 (IZ=1) :Thermal expansion of the block --------------------------------------------- * direct-stress condition on the north face of body PATCH(NDRSTR,NORTH,IXWES,IXEA,IYNORT,IYNORT,1,1,1,LSTEP) COVAL(NDRSTR,V1,FIXFLU,DSTRSN*(1.+POISSN)) * direct-stress condition on the east face of body PATCH(EDRSTR,EAST,IXEA,IXEA,1,IYNORT,1,1,1,LSTEP) COVAL(EDRSTR,U1,FIXFLU,DSTRSE*(1.+POISSN)) ** Case 2 (IZ=2) : As Case 1 but with automatic setting of zero-stress boundary conditions ------------------------------- NAMSAT=MOSG PLANTBEGIN INTEGER(IYNORT,IXWES,IXEA,IXFIX) IYNORT=5;IXWES=4;IXEA=NX-2;IXFIX=IXWES-1 * north face of body PATCH(NSISBC,NORTH,IXWES,NX,1,NY,2,2,1,LSTEP)CO =SISBC(FIXFLU) VAL=SISBC(0.0) COVAL(NSISBC,V1,GRND,GRND) * east face of body PATCH(ESISBC,EAST,IXWES,NX,1,NY,2,2,1,LSTEP) CO =SISBC(FIXFLU) VAL=SISBC(0.0) COVAL(ESISBC,U1,GRND,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> SISBC function is used to introduce zero-normal stress boundary conditions at the solid fluid interface. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Case 3 (IZ=3) : Thermal expansion of staircase block ---------------------------------------------------- * Heat-source boundary conditions PATCH(SS111H,CELL,1,NX,1,NY,1,NZ,1,LSTEP) CO=1.e10 VAL=:TBODY: COVAL(SS111H,TEM1,GRND,GRND) * direct-stress condition on east face of body PATCH(SS111NOR,NORTH,1,NX,1,NY,NZ,NZ,1,LSTEP) CO =SISBC(FIXFLU) VAL=SISBC(0.0/FIXFLU) COVAL(SS111NOR,V1,GRND,GRND) * direct-stress condition on east face of body PATCH(SS111EAS,EAST,1,NX,1,NY,NZ,NZ,1,LSTEP) CO =SISBC(FIXFLU) VAL=SISBC(0.0/FIXFLU) COVAL(SS111EAS,U1,GRND,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> SISBC function is used to introduce automatically (guided by PRPS distribition ) zero-normal stress boundary conditions at the solid 111 -fluid interface as indicated by the PATCH name SS111??. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Case 4 (IZ=4) : Pressure loaded block ------------------------------------- * on west face of body PATCH(WFACE,EAST,IXWES-1,IXWES-1,1,IYNORT,NZ,NZ,1,LSTEP) VAL=P1/:STIFFN: COVAL(WFACE,U1,FIXFLU,GRND) * on north face of body PATCH(NFACE,NORTH,IXWES,IXEA,IYNORT,IYNORT,NZ,NZ,1,LSTEP) VAL=-NORTH(P1)/:STIFFN: COVAL(NFACE,V1,FIXFLU,GRND) * on east face of body PATCH(EFACE,EAST,IXEA,IXEA,1,IYNORT,NZ,NZ,1,LSTEP) VAL=-P1[+1,,]/:STIFFN: COVAL(EFACE,U1,FIXFLU,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The external fluid pressures are used above as normal stress conditons at the solid boundaries. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND * fix displacement at the west body base to zero PATCH(BASE,EAST,IXWES-1,IXEA,1,1,NZ,NZ,1,LSTEP) COVAL(BASE,U1,FIXVAL,0.) ** Special data SPEDAT(SET,STRAIN,CALSTR,L,:CALSTR:) SPEDAT(SET,STRAIN,POISSN,R,:POISSN:) SPEDAT(SET,STRAIN,EXCOLI,R,:EXCOLI:) SPEDAT(SET,STRAIN,STIFFN,R,:STIFFN:) ** Solution criteria * GROUP 16. Termination criteria for inner iterations. LITER(TEM1)=10;ENDIT(TEM1)=1.E-20 LITER(P1)=20;LITER(U1)=1;LITER(V1)=1;LITER(W1)=1 SELREF=T;RESFAC=1.E-6 LSWEEP=150 ; TSTSWP=-1 * GROUP 17. Under-relaxation and related devices. RELAX(P1,LINRLX,0.8) ** Output data * GROUP 21. Frequency and extent of field printout. Storage & output, for stress and strain calculation. IXPRF=3;IXPRL=9;IYPRL=6 + STORE(EPSY,STRY) + OUTPUT(EPSY,Y,N,N,N,N,N) ; OUTPUT(STRY,Y,N,N,N,N,N) + FIINIT(EPSY)=0.0;FIINIT(STRY)=0.0 + STORE(EPSX,STRX) + OUTPUT(EPSX,Y,N,N,N,N,N) ; OUTPUT(STRX,Y,N,N,N,N,N) + FIINIT(EPSX)=0.0;FIINIT(STRX)=0.0 + STORE(EPST) ; OUTPUT(EPST,Y,N,N,N,N,N);FIINIT(EPST)=0.0 OUTPUT(P1,Y,Y,Y,Y,Y,Y) OUTPUT(PRPS,N,N,N,N,N,N) * GROUP 22. Location of spot-value & frequency of residual printout. * Assign cell-indices of spot-point monitoring location IZMON=1;IYMON=IYNORT-1;IXMON=(IXWES+IXEA)/2 nxprin=1;nyprin=1;nzprin=1 * GROUP 23. Variable-by-variable field printout and plot and/or tabulation of spot-values and residuals. NPRINT=LSWEEP dmpstk=t stop