PHOTON USE P;phi; 10 1;; msg( Single fluid central-jet concentration contours con h1 x 1 fil;.001 pause con cl; red msg( Averaged 17-fluid contours con cav x 1 fil;.001 pause con cl; red msg( Concentration fluctuations by transport equation con gg x 1 fil;.001 pause con cl; red msg( Averaged 17-fluid concentration fluctuation con gav x 1 fil;.001 msg msg Hit Enter for FPD hystogram msg pause p 20 1 con fpd x 1 fil;10. msg Hit Enter to continue ENDUSE >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> DISPLAY In this case, PLANT is used to introduce a turbulence model for concentration fluctuations which employs no conservation equations for statistical properties of the fluctuations. It is a variant of Multi-Fluid concept of Brian Spalding as employed by Sergei Zhubrin. The 17-fluid model is considered here to simulate the turbulent mixing resulting from the admission of two separate, isothermal coaxial jets of different composition into a concentric duct as depicted diagrammatically below. ENDDIS Entrance /////////////// Duct wall /////////////////Exit -> :::::::::::: -> surrounding -> :::::::::: --> jet ------->:::::Mixing layer spreading to wall---> " -------> ----> central jet ------->-.-.-.-.- Symmetry axis .-.-.-.-.-.-----> In parallel with above model, the conservation equation for the transport of the square of fluctuating concentration component is also PLANTed for comparative purposes. At the final stage of computations the results are processed to get the Fluid Population Distribution histogram which may be viewed by PHOTON. The use file for the latter is supplied. The example employs the number of PLANT features: - specific sources introduction, - reference residuals calculations, - intervention in calculation, - processing the results and - special print-out preparations, PLANT information : * Data input groups used: 13, 19 * Ground groups planted : 13, 19-6 * Headings used : SORC??, SC06?? * Functions used : SUM * Commands used : IF, REGION <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GROUP 1. Run title and other preliminaries TEXT(CONFINED JET FLOW: 17 FLUID MFM ------------------------------- REAL(HIN,GMIXL,CLEN,WIDTH,WIN1,WIN2,REYNO,WD2) REAL(TKEIN1,EPIN1,TKEIN2,EPIN2) INTEGER(IYJ);IYJ=3 REYNO=1.E6;WIDTH=0.3;HIN=1. WIN1=10.;WIN2=2.0 GROUP 3. X-direction grid specification CARTES=F;XULAST=0.1 GROUP 4. Y-direction grid specification NY=15;WD2=0.5*WIDTH;GRDPWR(Y,NY,WD2,1.0) GROUP 5. Z-direction grid specification NZ=20;CLEN=20.*WD2;GRDPWR(Z,NZ,CLEN,1.0) GROUP 7. Variables stored, solved & named ** H1 - single fluid concentration variable; G - square of concentration fluctuation; SOLVE(P1,W1,V1,H1,G) ** GENG - production for the square of concentration fluctuation STORE(ENUT,LEN1,GEN1,EPKE,GENG) SOLUTN(P1,Y,Y,Y,N,N,N) TURMOD(KEMODL) GROUP 8. Terms (in differential equations) & devices TERMS(H1,N,Y,Y,Y,Y,Y) TERMS( G,N,Y,Y,Y,Y,Y) GROUP 9. Properties of the medium (or media) RHO1=1.0;ENUL=WIN1*WIDTH/REYNO PRT(H1)= 0.86;PRNDTL(H1)= 0.71 PRT(G) = 0.7 ;PRNDTL(G) = 0.7 GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=0.5*(WIN1+WIN2);FIINIT(H1)=HIN;FIINIT(LEN1)=0.1*YVLAST FIINIT(ENUT)=0.01*WIN1*YVLAST ** TKEIN = 0.25*WIN1*WIN1*FRIC where FRIC=0.018 AT REYNO=1.E5 TKEIN1=0.25*WIN1*WIN1*0.018 TKEIN2=0.25*WIN2*WIN2*0.018 FIINIT(KE)=0.5*(TKEIN1+TKEIN2) ** EPIN = 0.1643*KIN**1.5/LMIX where LMIX=0.045*WIDTH GMIXL=0.011*WD2 EPIN2=TKEIN2**1.5/GMIXL*0.1643 EPIN1=TKEIN1**1.5/GMIXL*0.1643 FIINIT(EP)=0.5*(EPIN1+EPIN2) FIINIT(P1)=1.3E-4 GROUP 13. Boundary conditions and special sources ** Inlet Boundaries INLET(IN1,LOW,1,1,1,IYJ,1,1,1,1) VALUE(IN1,P1 , WIN1) VALUE(IN1,W1 , WIN1) VALUE(IN1,H1 , 1.0) VALUE(IN1,KE , TKEIN1) VALUE(IN1,EP , EPIN1) VALUE(IN1,G , 0.0) INLET(IN2,LOW,1,1,IYJ+1,NY,1,1,1,1) VALUE(IN2,P1, WIN2) VALUE(IN2,W1, WIN2) VALUE(IN2,H1, 0.0) VALUE(IN2,KE, TKEIN2) VALUE(IN2,EP, EPIN2) VALUE(IN2,G , 0.0) **Outlet boundary PATCH(OUTLET,HIGH,1,NX,1,NY,NZ,NZ,1,1) COVAL(OUTLET,P1,1.0e05,0.0) COVAL(OUTLET,W1,ONLYMS,0.0);COVAL(OUTLET,V1,ONLYMS,0.0) COVAL(OUTLET,KE,ONLYMS,0.0);COVAL(OUTLET,EP,ONLYMS,0.0) **North-Wall boundary WALL (WFNN,NORTH,1,NX,NY,NY,1,NZ,1,1) GROUP 15. Termination of sweeps LSWEEP=250 RESFAC=0.01 GROUP 16. Termination of iterations LITHYD=10 GROUP 17. Under-relaxation devices KELIN=3 RELAX(P1,LINRLX,0.25) RELAX(V1,FALSDT,0.025);RELAX(W1,FALSDT,0.025) RELAX(KE,FALSDT,0.025);RELAX(EP,FALSDT,0.025) RELAX(G,FALSDT ,0.025) GROUP 19. Data communicated by SATELLITE to GROUND GROUP 21. Print-out of variables WALPRN=T;OUTPUT(KE,Y,Y,Y,Y,Y,Y);OUTPUT(H1,Y,Y,Y,Y,Y,Y) GROUP 22. Monitor print-out IZMON=NZ-1;IYMON=NY-1;UWATCH=T GROUP 23. Field print-out and plot control NPLT=1;NZPRIN=1 NYPRIN=1;IYPRF=1;IYPRL=30 TSTSWP=-1 NAMSAT=MOSG PLANTBEGIN **Source term for g PATCH(SORG,VOLUME,1,NX,1,NY,1,NZ,1,1)CO=2.0*:RHO1:*EPKE VAL=GENG/(2.0*:RHO1:*EPKE+TINY) COVAL(SORG,G , GRND ,GRND ) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Above statements contain the formulae for combined source/sink term for the production and dissipation of the concentration fluctuations. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PATCH(WG,VOLUME,1,NX,NY,NY,1,NZ,1,1) VAL=GENG/(2.0*:RHO1:*EPKE+TINY) COVAL(WG,G , FIXVAL ,GRND ) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Production of G is made equal to its dissipation at North-Wall boundary by FIXVALing its value to the production rate divided by twice product of density and EPKE. The latter is built-in variable standing for EP/KE. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Provide the re-calculation of reference residuals for G RES=SUM(VOL*(GENG-2.*:RHO1:*EPKE*G)/(NY*NZ)) RESREF(G)=RES >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> By above two statements the reference residuals for G is calculated at the and of z-slab as a sum of its generation rate per cell. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< **Calculation of GENG * Auxiliary variables STORE(DFZ,DFY,DFZH,DFYN) FIINIT(DFZ) =0.0;FIINIT(DFY) =0.0 FIINIT(DFZH)=0.0;FIINIT(DFYN)=0.0 DFZ=((H1[,,+1]-H1)/DZGNZ)**2 REGION(1,NX,1,NY,1,NZ-1,1,1) DFY=((H1[,+1,]-H1)/DYG2D)**2 REGION(1,1,1,NY-1,1,NZ,1,1) DFZH=((H1-H1[,,-1])/DZGNZ[,,-1])**2 REGION(1,NX,1,NY,NZ,NZ,1,1) DFYN=((H1-H1[,-1,])/DYG2D[,-1,])**2 REGION(1,NX,NY,NY,1,NZ,1,1) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above statements calculate the square concentration derivatives separately for internal and near domain bounadary regions. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GENG=2.8*:RHO1:*ENUT*(DFZ+DFY+DFZH+DFYN) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The sum of the radial and longitudinal derivatives is multiplied by density and turbulent viscosity times 2.8 to get the generation term. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< **Output calculations GG - concentration fluctuation; GGF - concentration fluctuation normalised by local concentration of central jet fluid. STORE(GG,GGF) FIINIT(GGF)=0.0 GG=SQRT(G) IF(ISWEEP.EQ.LSWEEP) GGF=GG/(H1+TINY) IF(ISWEEP.EQ.LSWEEP) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> At the end of z-slab for the last sweep the concentration fluctuation is calculated and normalized by the local average concentration. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ******************** MFTM section *************** ** Number of fluids in population INTEGER(NFLUIDS) NFLUIDS=17 ** Micro-mixing constant REAL(MMC) MMC = 5.0 ; RG(1) = MMC ** Solve for fluid mass fractions F1, F2, ..., F17 DO II=1,NFLUIDS SOLVE(F:II:) TERMS(F:II:,N,Y,y,y,y,y) PRT(F:II:)= 0.86;PRNDTL(F:II:)= 0.71 RELAX(F:II:,linrlx,0.15) VARMIN(F:II:)=0.0;VARMAX(F:II:)=1.0 PATCH(PROF:II:,PROFIL,1,1,1,1,1,20,1,1) PLOT(PROF:II:,F:II:,0.000E+00, 0.000E+00) ENDDO ABSIZ=0.5; ORSIZ=0.2 ** Fluid population boundary conditions INLET(IN1,LOW,1,1,1,3,1,1,1,1) INLET(IN2,LOW,1,1,4,NY,1,1,1,1) DO II=1,NFLUIDS VALUE(IN1,F:II:,0.0) VALUE(IN2,F:II:,0.0) ENDDO VALUE(IN1,F1 , 1.0); fiinit(f1)=0 VALUE(IN2,F:NFLUIDS:, 1.0) ** Coupling/splitting rates PATCH(MIX,PHASEM,1,NX,1,NY,1,NZ,1,1) * Fluid 1 CO=RG(1)*EPKE*(F3+F5+F7+F9+F11+F13+F15+F17) COVAL(MIX,F1 , GRND ,0.0 ) * Fluid 2 VAL=2.*RG(1)*EPKE*(F1*F3)-$ RG(1)*EPKE*(F4+F6+F8+F10+F12+F14+F16)*F2 COVAL(MIX,F2, FIXFLU,GRND) * Fluid 3 VAL=2.*RG(1)*EPKE*(F2*F4+F1*F5)-$ RG(1)*EPKE*(F1+F17+F5+F7+F9+F11+F13+F15)*F3 COVAL(MIX,F3, FIXFLU,GRND) * Fluid 4 VAL=2.*RG(1)*EPKE*(F3*F5+F2*F6+F1*F7)-$ RG(1)*EPKE*(F2+F6+F8+F10+F12+F14+F16)*F4 COVAL(MIX,F4, FIXFLU,GRND) * Fluid 5 VAL=2.*RG(1)*EPKE*(F4*F6+F3*F7+F2*F8+F1*F9)-$ RG(1)*EPKE*(F1+F3+F17+F7+F9+F11+F13+F15)*F5 COVAL(MIX,F5, FIXFLU,GRND) * Fluid 6 VAL=2.*RG(1)*EPKE*(F5*F7+F4*F8+F3*F9+$ F2*F10+F1*F11)-$ RG(1)*EPKE*(F2+F4+F8+F10+F12+F14+F16)*F6 COVAL(MIX,F6, FIXFLU,GRND) * Fluid 7 VAL=2.*RG(1)*EPKE*(F6*F8+F5*F9+F4*F10+$ F3*F11+F2*F12+F1*F13)-$ RG(1)*EPKE*(F1+F3+F5+F17+F9+F11+F13+F15)*F7 COVAL(MIX,F7, FIXFLU,GRND) * Fluid 8 VAL=2.*RG(1)*EPKE*(F7*F9+F6*F10+F5*F11+$ F4*F12+F3*F13+F2*F14+F1*F15)-$ RG(1)*EPKE*(F2+F4+F6+F10+F12+F14+F16)*F8 COVAL(MIX,F8, FIXFLU,GRND) * Fluid 9 VAL=2.*RG(1)*EPKE*(F8*F10+F7*F11+F6*F12+$ F5*F13+F4*F14+F3*F15+F2*F16+F1*F17)-$ RG(1)*EPKE*(F1+F3+F5+F7+F17+F11+F13+F15)*F9 COVAL(MIX,F9, FIXFLU,GRND) * Fluid 10 VAL=2.*RG(1)*EPKE*(F9*F11+F8*F12+F7*F13+$ F6*F14+F5*F15+F4*F16+F3*F17)-$ RG(1)*EPKE*(F2+F4+F6+F8+F12+F14+F16)*F10 COVAL(MIX,F10, FIXFLU,GRND) * Fluid 11 VAL=2.*RG(1)*EPKE*(F10*F12+F9*F13+F8*F14+$ F7*F15+F6*F16+F5*F17)-$ RG(1)*EPKE*(F1+F3+F5+F7+F9+F17+F13+F15)*F11 COVAL(MIX,F11, FIXFLU,GRND) * Fluid 12 VAL=2.*RG(1)*EPKE*(F11*F13+F10*F14+F9*F15+$ F8*F16+F7*F17)-$ RG(1)*EPKE*(F2+F4+F6+F8+F10+F14+F16)*F12 COVAL(MIX,F12, FIXFLU,GRND) * Fluid 13 VAL=2.*RG(1)*EPKE*(F12*F14+F11*F15+$ F10*F16+F9*F17)-$ RG(1)*EPKE*(F1+F3+F5+F7+F9+F11+F15+F17)*F13 COVAL(MIX,F13, FIXFLU,GRND) * Fluid 14 VAL=2.*RG(1)*EPKE*(F13*F15+F12*F16+F11*F17)-$ RG(1)*EPKE*(F2+F4+F6+F8+F10+F12+F16)*F14 COVAL(MIX,F14, FIXFLU,GRND) * Fluid 15 VAL=2.*RG(1)*EPKE*(F14*F16+F13*F17)-$ RG(1)*EPKE*(F1+F3+F5+F7+F9+F11+F13+F17)*F15 COVAL(MIX,F15, FIXFLU,GRND) * Fluid 16 VAL=2.*RG(1)*EPKE*(F15*F17)-$ RG(1)*EPKE*(F2+F4+F6+F8+F10+F12+F14)*F16 COVAL(MIX,F16, FIXFLU,GRND) * Fluid 17 CO=RG(1)*EPKE*(F1+F3+F5+F7+F9+F11+F13+F15) COVAL(MIX,F17 , GRND ,0.0 ) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above source/sink terms in the fluid-mass-fraction equations are shared according to a coupling/splitting scheme derived from Spalding concept. The scheme hypotheses is that the coupling may only take place between those parent fluids which would produce the appropriate offsprings inheriting the ATTRIBUTES of either parent in EQUAL proportion. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Output calculations STORE(CAV,MAS,GAV,GF) FIINIT(GF)=0.0 CAV=16./16.*F1 + 15./16.*F2 + 14./16.*F3 +$ 13./16.*F4 + 12./16.*F5 + 11./16.*F6 +$ 10./16.*F7 + 9./16.*F8 + 8./16.*F9 +$ 7./16.*F10+ 6./16.*F11+ 5./16.*F12+$ 4./16.*F13+ 3./16.*F14+ 2./16.*F15+$ 1./16.*F16+ 0./16.*F17 IF(ISWEEP.EQ.LSWEEP) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> At the end of the iz-slab for the last sweep, CAV, averaged concentration of central jet fluid, is calculated from the individual fluid mass-fractionsand their arrributes; <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< MAS=F1+F2+F3+F4+F5+F6+F7+F8+F9+F10+F11+F12+$ F13+F14+F15+F16+F17 IF(ISWEEP.EQ.LSWEEP) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> At the end of the iz-slab for the last sweep, MAS, sum of fluid mass fractions, is calculated to check its equality to unity; <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GAV=ABS(CAV-16./16)*F1 + ABS(CAV-15./16.)*F2 +$ ABS(CAV-14./16)*F3 + ABS(CAV-13./16.)*F4 +$ ABS(CAV-12./16)*F5 + ABS(CAV-11./16.)*F6 +$ ABS(CAV-10./16)*F7 + ABS(CAV- 9./16.)*F8 +$ ABS(CAV- 8./16)*F9 + ABS(CAV- 7./16.)*F10+$ ABS(CAV- 6./16)*F11+ ABS(CAV- 5./16.)*F12+$ ABS(CAV- 4./16)*F13+ ABS(CAV- 3./16.)*F14+$ ABS(CAV- 2./16)*F15+ ABS(CAV- 1./16.)*F16+$ ABS(CAV- 0./16)*F17 IF(ISWEEP.EQ.LSWEEP) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> At the end of the iz-slab for the last sweep, GAV, averaged concentration fluctuation, is calculated as the sum of local deviations of averaged concentrations from the individual concentration attributes; <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GF =GAV/(CAV+TINY) IF(ISWEEP.EQ.LSWEEP) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> At the end of the iz-slab for the last sweep, GF, averaged concentration fluctuation normalised by local averaged concentration of central jet fluid, is calculated. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Output data processing for plotting PDF * Specify the cell in question: IY=IG(1), IZ=IG(2) IG(1)=4; IG(2)=4 STORE(FPD);FIINIT(FPD)=0.0 FPD=F1[1,IG(1),IG(2)]*AMAX1(ABS(F1[1,IG(1),IG(2)]$ -YV2D)/(F1[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,1,1) /ISWEEP.EQ.LSWEEP FPD=F2[1,IG(1),IG(2)]*AMAX1(ABS(F2[1,IG(1),IG(2)]$ -YV2D)/(F2[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,2,2) /ISWEEP.EQ.LSWEEP FPD=F3[1,IG(1),IG(2)]*AMAX1(ABS(F3[1,IG(1),IG(2)]$ -YV2D)/(F3[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,3,3) /ISWEEP.EQ.LSWEEP FPD=F4[1,IG(1),IG(2)]*AMAX1(ABS(F4[1,IG(1),IG(2)]$ -YV2D)/(F4[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,4,4) /ISWEEP.EQ.LSWEEP FPD=F5[1,IG(1),IG(2)]*AMAX1(ABS(F5[1,IG(1),IG(2)]$ -YV2D)/(F5[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,5,5) /ISWEEP.EQ.LSWEEP FPD=F6[1,IG(1),IG(2)]*AMAX1(ABS(F6[1,IG(1),IG(2)]$ -YV2D)/(F6[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,6,6) /ISWEEP.EQ.LSWEEP FPD=F7[1,IG(1),IG(2)]*AMAX1(ABS(F7[1,IG(1),IG(2)]$ -YV2D)/(F7[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,7,7) /ISWEEP.EQ.LSWEEP FPD=F8[1,IG(1),IG(2)]*AMAX1(ABS(F8[1,IG(1),IG(2)]$ -YV2D)/(F8[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,8,8) /ISWEEP.EQ.LSWEEP FPD=F9[1,IG(1),IG(2)]*AMAX1(ABS(F9[1,IG(1),IG(2)]$ -YV2D)/(F9[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,9,9) /ISWEEP.EQ.LSWEEP FPD=F10[1,IG(1),IG(2)]*AMAX1(ABS(F10[1,IG(1),IG(2)]$ -YV2D)/(F10[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,10,10) /ISWEEP.EQ.LSWEEP FPD=F11[1,IG(1),IG(2)]*AMAX1(ABS(F11[1,IG(1),IG(2)]$ -YV2D)/(F11[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,11,11) /ISWEEP.EQ.LSWEEP FPD=F12[1,IG(1),IG(2)]*AMAX1(ABS(F12[1,IG(1),IG(2)]$ -YV2D)/(F12[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,12,12) /ISWEEP.EQ.LSWEEP FPD=F13[1,IG(1),IG(2)]*AMAX1(ABS(F13[1,IG(1),IG(2)]$ -YV2D)/(F13[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,13,13) /ISWEEP.EQ.LSWEEP FPD=F14[1,IG(1),IG(2)]*AMAX1(ABS(F14[1,IG(1),IG(2)]$ -YV2D)/(F14[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,14,14) /ISWEEP.EQ.LSWEEP FPD=F15[1,IG(1),IG(2)]*AMAX1(ABS(F15[1,IG(1),IG(2)]$ -YV2D)/(F15[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,15,15) /ISWEEP.EQ.LSWEEP FPD=F16[1,IG(1),IG(2)]*AMAX1(ABS(F16[1,IG(1),IG(2)]$ -YV2D)/(F16[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,16,16) /ISWEEP.EQ.LSWEEP FPD=F17[1,IG(1),IG(2)]*AMAX1(ABS(F17[1,IG(1),IG(2)]$ -YV2D)/(F17[1,IG(1),IG(2)]+0.-YV2D) ,0.0) REGION(1,1,1,NY,17,17) /ISWEEP.EQ.LSWEEP >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above operations are made at the end of the iz-slab for the last sweep to fill each IY-column of the domain by Fi value. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND dmpstk=t DISTIL=T EX(P1)=5.613E-01; EX(V1)=2.532E-02; EX(W1)=2.840E+00 EX(KE)=4.442E-01; EX(EP)=6.611E+00; EX(H1)=1.939E-01 EX(FPD)=2.724E-02; EX(GF)=4.936E-01; EX(GAV)=5.976E-02 EX(MAS)=1.000E+00; EX(CAV)=1.939E-01; EX(F17)=1.402E-01 EX(F16)=7.228E-02; EX(F15)=2.095E-01; EX(F14)=3.191E-01 EX(F13)=1.075E-01; EX(F12)=4.737E-02; EX(F11)=2.690E-02 EX(F10)=1.746E-02; EX(F9)=1.188E-02; EX(F8)=8.836E-03 EX(F7)=6.076E-03; EX(F6)=5.269E-03; EX(F5)=3.765E-03 EX(F4)=3.483E-03; EX(F3)=2.355E-03; EX(F2)=3.138E-03 EX(F1)=1.499E-02; EX(GGF)=5.634E+13; EX(GG)=5.768E-02 EX(DFYN)=3.957E-01; EX(DFZH)=3.238E-06; EX(DFY)=1.765E+01 EX(DFZ)=4.226E-02; EX(GENG)=2.216E-01; EX(EPKE)=8.359E+00 EX(GEN1)=1.724E+03; EX(LEN1)=1.567E-02 EX(ENUT)=4.963E-03; EX(G)=5.590E-03 LIBREF=616 STOP