PHOTON USE p;;;;; up 1 0 0;vi 0.5 1 0.75 gr ou x 1;gr ou y 1;gr ou z 1 gr ou x m;gr ou y m;gr ou z m gr ou x 1 y 1 2 z 2 2 col 2 gr ou x 6 y 1 2 z 7 7 col 2 gr ou z 4 x 1 4 y 1 3 col 6 gr ou z 6 x 2 5 y 1 3 col 6 ve y 2 sh msg 3D SHELL-AND-TUBE HEAT EXCHANGER msg -------------------------------- msg Velocity 1 phase: msg Press Enter to continue pause;vi 0 1 0 *msg 3D SHELL-AND-TUBE HEAT EXCHANGER *msg -------------------------------- *msg Temperature distribution 1 phase: *con 1sth y 2 sh;in 50 msg Press Enter to continue pause con off;red *msg 3D SHELL-AND-TUBE HEAT EXCHANGER *msg -------------------------------- *msg Temperature distribution 2 phase: *con 2ndh y 2 sh;in 50 msg Press e to END ENDUSE >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> #cls DISPLAY This case concerns 3D flow of viscous fluid on the shell side of a heat exchanger. Two types of false-time under-relaxation are provided via PLANT: namely 1. global and 2. local. For the purpose of illustration, the solution process is divided into 3 stages, as follows: * No relaxation for ISWEEP < 101 , * Global relaxation for 100 < ISWEEP < 201 , * Local relaxation for 200 < ISWEEP . PLANT information : * Data input groups used: 17, 19 * Ground groups planted : 13, 19-2, 19-3 * Headings used : SC02??, SC03??, SORC?? * Functions used : None * Commands used : IF, REGION ENDDIS <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GROUP 1. Run title and other preliminaries TEXT( Global and self-steering under-relaxatn ** FLO1 = mass-flow rate of shell fluid REAL(FLO1);FLO1=0.1 GROUP 3. X-direction grid specification The heat exchanger is a rectangular box, 1m high, 1m wide and 4m long. A uniform 5*3*8 grid is used, as was done by Patankar and Spalding. Only one half of the exchanger is included in the calculation domain, because of the symmetry of the geometry. GRDPWR(X,5,1.0,1.0) GROUP 4. Y-direction grid specification NY=3 GRDPWR(Y,NY,0.5,1.0) GROUP 5. Z-direction grid specification GRDPWR(Z,8,4.0,1.0) GROUP 7. Variables stored, solved & named The shell-side fluid is a single-phase one, for which five variables must be solved; only the enthalpy needs be computed for the tube-side fluid. SOLVE(P1,U1,V1,W1) STORE(EPOR,NPOR,HPOR) GROUP 8. Terms (in differential equations) & devices TERMS(U1,Y,Y,Y,Y,Y,Y);TERMS(V1,Y,Y,Y,Y,Y,Y) TERMS(W1,Y,Y,Y,Y,Y,Y) GROUP 9. Properties of the medium (or media) ENUL=10. GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=FLO1;FIINIT(U1)=0.0;FIINIT(V1)=0.0 FIINIT(EPOR)=0.5;FIINIT(NPOR)=0.5;FIINIT(HPOR)=0.5 GROUP 13. Boundary conditions and special sources ** West boundary; shell fluid inlet ; 2 cells in west wall PATCH(INLET1,CELL,1,1,2,3,2,2,1,1000) COVAL(INLET1,P1,FIXFLU,FLO1/2.0) ** East boundary; shell fluid outlet; 2 cells in east wall PATCH(OUTLET1,EAST,NX,NX,2,3,NZ-1,NZ-1,1,1000) COVAL(OUTLET1,P1,FIXP,0.0) ** Baffle 1 at NZ=3 PATCH(BAFFLE1,HIGH,1,NX-1,1,NY,3,3,1,1000) COVAL(BAFFLE1,W1,FIXVAL,0.0) ** Baffle 2 at NZ=5 PATCH(BAFFLE2,HIGH,2,NX,1,NY,5,5,1,1000) COVAL(BAFFLE2,W1,FIXVAL,0.0) GROUP 15. Termination of sweeps LSWEEP=400 GROUP 16. Termination of iterations LITER(P1)=100 GROUP 17. Under-relaxation devices NAMSAT=MOSG RG(1)=ENUL PLANTBEGIN ** Global under-relaxationRG(2)=AMIN1(XULAST/FLOAT(NX),YVLAST/FLOAT(NY),$ ZWLAST/FLOAT(NZ))/$ AMAX1(U1,:FLO1:/2.) REGION(1,1,2,3,2,2) IF(ISWEEP.GT.100.AND.ISWEEP.LE.200) DTFALS(U1)=RG(2) REGION(1,1,1,1,1,1) IF(ISWEEP.GT.100.AND.ISWEEP.LE.200) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Global under-relaxation is introduced by PLANTed codings for DTFALS(U1) at the start of each sweep. It is assumed to be equal to the smallest of the cell sizes divided by the largest of inlet mass flux velocity and local velocity magnitude normal to the inlet plane. It is applied over the whole domain for the velocity in question IF isweep is greater than 100 but less or equal than 200. Here and for next two statemnts, command REGION with unity arguments is used to economize the operations needed for equivalences. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< DTFALS(V1)=RG(2) REGION(1,1,1,1,1,1) IF(ISWEEP.GT.100.AND.ISWEEP.LE.200) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above settings do for DTFALS(V1) what has been done for DTFALS(U1) above. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< DTFALS(W1)=RG(2) REGION(1,1,1,1,1,1) IF(ISWEEP.GT.100.AND.ISWEEP.LE.200) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above settings do for DTFALS(W1) what has been done for DTFALS(U1). <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Local self-steering under-relaxation PATCH(RELAX,PHASEM,1,NX,1,NY,1,NZ,1,1) CO=1./TFAL COVAL(RELAX,U1,GRND,SAME) IF(ISWEEP.GT.200) CO=1./TFAL COVAL(RELAX,V1,GRND,SAME) IF(ISWEEP.GT.200) CO=1./TFAL COVAL(RELAX,W1,GRND,SAME) IF(ISWEEP.GT.200) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Local self-steering under-relaxation is introduced through the sources of momentum for the whole domain defined by PATCH named RELAX, which TYPE is PHASEM, VALue is SAME, COefficient, which is set to reciprocal of false-time step. It is applied for each sweep greater than 200. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Local fals-time step STORE(TFAL);OUTPUT(TFAL,Y,Y,Y,Y,Y,Y) TFAL=1/(SQRT(U1**2+W1**2+V1**2)/$ AMIN1(DXU2D*1,AMIN1(DYV2D*1,DZ*1))+$ RG(1)/AMIN1(DXU2D*1,AMIN1(DYV2D*1,DZ*1))**2) IF(ISWEEP.GT.200) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The reciprocal of local self-steering false-time step is set to the local velocity vector magnitude divided by smallest distance between walls of continuity cell in question plus local diffusivities, i.e. kinematic viscosities, divided by the smallest distance squarred. The variable TFAL, false-time, is provided to assist the computations. It is calculated right at the start of each IZ-slab for all sweeps greter than 200 and can be used to monitor the variation of local magnitudes of false-time steps. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND GROUP 19. Data communicated by satellite to GROUND GROUP 20. Preliminary print-out GROUP 21. Print-out of variables Print-out of porosities is suppressed. OUTPUT(EPOR,N,N,N,N,N,N);OUTPUT(NPOR,N,N,N,N,N,N) OUTPUT(HPOR,N,N,N,N,N,N) GROUP 22. Spot-value print-out IXMON=NX-2;IYMON=2;IZMON=4 GROUP 23. Field print-out and plot control IPLTL=LSWEEP;IPROF=1;ORSIZ=0.4;XZPR=T;NPLT=1 TSTSWP=-1 dmpstk=t DISTIL=T EX(P1)=3.711E+02; EX(U1)=3.000E-01; EX(V1)=2.753E-02 EX(W1)=3.253E-01; EX(TFAL)=2.757E-03 LIBREF=613 STOP