PHOTON USE x;x1;; msg( 2D zigzag channel gr z 1 pause x;x2;; msg( 2D periodically broken channel gr z 1 pause x;x3;; msg( 2D corrugated channel gr z 1 ENDUSE >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> DISPLAY This input file is the one of the series of three "sample-kits". It concerns the use of Fourier series to generate the 2D BFC grids. It is wholly focused on calculation of grid corner coordinates. Therefore, no other actions are supported by input data. It also differs from the previous examples in being arranged as unsteady problem: at each time moment the new BFC grid is PLANTed and dumped into specified file to be viewed by PHOTON. ENDDIS PLANT information : * Data input groups used: 6 * Ground groups planted : 19-2 * Headings used : MXYZ?? * Functions used : None * Commands used : IF <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< GROUP 1. Run title and other preliminaries TEXT( Analytical BFC grids : 2D sample-kit. GROUP 2. Transience; time-step specification STEADY=F GRDPWR(T,3,3.,1.0) GROUP 6. Body-fitted coordinates or grid distortion NX=150;NY=20;NZ=1 BFC=T NAMSAT=MOSG PLANTBEGIN 1. 2D zigzag channel ----------------- REAL(PI,LENGTH,WIDTH) ** Pi number PI=3.14159 ** Channel length LENGTH=6.*PI ** Channel width WIDTH=2.*ZWLASTXC=:LENGTH:/FLOAT(NX)*FLOAT(I-1) YC=:PI:/2.-4/:PI:*(COS(XC)+COS(3*XC)/9+$ COS(5*XC)/25+$ COS(7*XC)/49+COS(9*XC)/81+$ COS(11*XC)/121+COS(13*XC)/169)+$ :WIDTH:*FLOAT(J-1)/FLOAT(NY) ZC=ZWLAST*FLOAT(K-1)/FLOAT(NZ) IF(ISTEP.EQ.1.AND.ISWEEP.EQ.1) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above three statements contain rather lengthy algebraic formulae. All together they provide the calculation of cartesian coordinates for cell corners of the grid fitted the zig-zag channel of 2m width and 6pi length, as can be seen by PHOTON. The grid is uniform in both direction. The generation is made at the first sweep of the first time step. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< 2. 2D periodically broken channel ------------------------------- REAL(AA,ALFA,TWOPI) TWOPI=2.*PI ** Shape factors AA=0.75;ALFA=TWOPI/12 XC=:LENGTH:/FLOAT(NX)*FLOAT(I-1) YC=8/:TWOPI:*:AA:/:ALFA:*(SIN(0.75)*SIN(XC)+$ SIN(3*2.*3.14159/12)* SIN(3*XC)/9+$ SIN(5*2.*3.14159/12)*SIN(5*XC)/25+$ SIN(7*2.*3.14159/12)*SIN(7*XC)/49+$ SIN(9*2.*3.14159/12)*SIN(9*XC)/81+$ SIN(11*2.*3.14159/12)*SIN(11*XC)/121+$ SIN(13*2.*3.14159/12)*SIN(13*XC)/169+$ SIN(15*2.*3.14159/12)*SIN(15*XC)/225+$ SIN(17*2.*3.14159/12)*SIN(17*XC)/289+$ SIN(19*2.*3.14159/12)*SIN(19*XC)/361)+$ 2.*ZWLAST*FLOAT(J-1)/FLOAT(NY) ZC=ZWLAST*FLOAT(K-1)/FLOAT(NZ) IF(ISTEP.EQ.2.AND.ISWEEP.EQ.1) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above three statements perform the corresponding functions for the generation of the uniform grid fitted the periodically broken channel. It is made at the first sweep of the second time step. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< 3. 2D corrugated channel ------------------------ XC=:LENGTH:/FLOAT(NX)*FLOAT(I-1) YC=FLOAT(J-1)/FLOAT(NY)*(1/3.14159+$ 0.5*SIN(XC-3.14159/2)-$ 2/3.14159*(COS(2*(XC-3.14159/2))/3+$ COS(4*(XC-3.14159/2))/15+$ COS(6*(XC-3.14159/2))/35+$ COS(8*(XC-3.14159/2))/63+$ COS(10*(XC-3.14159/2))/99+$ COS(12*(XC-3.14159/2))/143))+$ 2.*ZWLAST*FLOAT(J-1)/FLOAT(NY) ZC=ZWLAST*FLOAT(K-1)/FLOAT(NZ) IF(ISTEP.EQ.3.AND.ISWEEP.EQ.1) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> At the first sweep of the third time step the generation of the last grid of the series is made governed by above formulae. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND SPEDAT(SET,GXMONI,TRANSIENT,L,F) LSWEEP=1;CSG1=PHI;CSG2=XYZ;IDISPA=1 SOLVE(MARK) dmpstk=t DISTIL=T EX(MARK)=1.000E-10 LIBREF=607 STOP