PHOTON USE p set prop off gr ou z 1 x 12 25 y 19 21 gr ou z 1 x 12 25 y 4 18 gr ou z 1 x 14 23 y 7 18 gr ou z 1 x 12 25 y 22 31 gr ou z 1 x 14 23 y 22 29 *gr ou z 1 x 11 11 y 25 28 *gr ou z 1 x 26 26 y 25 28 gr z 1 x 11 11 y 20 21 gr z 1 x 26 26 y 20 21 *gr ou z 1 x 26 26 y 7 10 *gr ou z 1 x 11 11 y 15 18 gr ou z 1 x 14 16 y 1 3 gr ou z 1 x 21 23 y 1 3 gr ou z 1 x 11 11 y 16 17 gr ou x 11 11 y 15 18 gr ou z 1 x 26 26 y 8 9 gr ou x 27 y 7 10 gr ou z 1 x 11 11 y 26 27 gr ou x 11 11 y 25 28 gr ou z 1 x 26 26 y 26 27 gr ou x 27 y 25 28 gr ou x 15 15 y 19 21 gr ou x 16 16 y 19 21 gr ou x 17 17 y 19 21 gr ou x 18 18 y 19 21 gr ou x 19 19 y 19 21 gr ou x 20 20 y 19 21 gr ou x 21 21 y 19 21 gr ou x 22 22 y 19 21 gr ou x 23 23 y 19 21 gr ou z 1 x 15 22 y 8 18 gr ou z 1 x 16 21 y 9 18 gr ou z 1 x 17 20 y 10 18 gr ou z 1 x 18 19 y 11 18 gr ou y 11 11 x 17 23 gr ou y 15 15 x 14 20 gr ou x 19 19 y 12 29 set vec comp uu1 vv1 - vec z 1 sh set vec comp u2 v2 - vec z 1 msg( Shell and tube fluid velocity vectors pause vec cl red set vec comp u1 v1 - vec z 1 x 11 m sh msg( Thermal displacement vectors in shell and tube bundle ENDUSE >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> DISPLAY A 2D shell-and-tube heat-exchanger is used to exemplify essential ideas of HEXAGON model, which is probably the first to show how the thermo-hydraulics of the shell-side and tube-side fluids could be simultaneously computed with the displacements and thermal stresses in tubes and shell to be included in a SFT, Solid-Fluid-Thermal, heat-exchanger analysis. The case illustrates the use a single computer program to calculate from the partial-differential equations governing relevant fluid processes the distributions of: * shell-side fluid velocity components; * the corresponding temperatures and pressures; * the tube-side fluid velocity components; * the corresponding temperatures and pressures; * the tube metal temperatures; and * the displacements and stresses in the tubes and the shell. The heat exchanger considered is an imaginary one, having two baffles within the shell, with the U-bend tubes arranged in array and header distributing the in-fluid between the tubes and collecting out-fluid. No attempt has been made to pick-up and implement the actual resistance formulae which are widely used in thermal engineering. But because PLANT is used to represent them, the artificial formulae can be easily replaced by required ones. The heat exchanger is a rectangular box, 2.0m high, 1m wide and 1m long. It consists of the header, the hight of which is 0.8m and shell closed at the bottom and open at the top. The header is divided into two halfes by a vertical plate. The shell is uniformly filled with the tubes. The tube fluid (water) enters the header through the inlet at its west wall, flows downwards in west half of the shell, turns through the U bend at the bottom and rises upward in the other shell half to enter the east half of the header going out through the outlet at header east side. The shell fluid ( air ) entering the shell through the inlet at the east wall is made to pass between two baffles in a zig-zag manner, until it goes out through the outlet at the top of the west wall of shell. Only X-Y plane of the exchanger is included in the calculation domain, because of 2D-nature of analysis. A uniform 26*32*1 grid is used, to cover computational space. PLANT is used to: * set and/or compute the fluid properties in sub-domains; * introduce the non-linear flow resistances ; * calculate the distribution of overall heat transfer coefficient; * calculate the distribution of the tube metal temperatures; * link the sub-domains for data transfer and manipulations and * output data processing. ENDDIS PLANT information : * Data input groups used: 9, 13, 19 * Ground groups planted : 9, 13, 19-6 * Headings used : PRPT??, * Functions used : None * Commands used : REGION <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< TEXT( HEXAGON 2D : SFT ANALYSIS FOR A MODEL HEAT EXCHANGER =========================================================== Whole domain settings =========================================================== REAL(U1IN,LENGTH,HIGHT);U1IN=1.0;LENGTH=2.6;HIGHT=3.2 GRDPWR(X,26,LENGTH,1.);GRDPWR(Y,32,HIGHT,1.) STORE(EPOR,NPOR) STORE(PRPS,DEN1,VISL,MARK) SOLVE(P1,U1,V1,H1) STORE(U2,V2) NAME(H1)=TEMP TERMS(TEMP,N,Y,Y,N,Y,N) + SOLVE(TEM1) + SOLUTN(TEM1,Y,Y,Y,N,N,Y) + TERMS(TEM1,N,Y,Y,Y,Y,Y) + FIINIT(TEM1)=0. INIADD=F PRNDTL(TEMP)=.702 FIINIT(U1)=U1IN LSWEEP=400 RESFAC=1.E-8 RELAX(P1,LINRLX,0.25) RELAX(U1,FALSDT,.075);RELAX(V1,FALSDT,.075) RELAX(TEMP,FALSDT,3.) RELAX(TEM1,FALSDT,1.E4) IXMON=18;IYMON=5;NXPRIN=1;NYPRIN=1 TSTSWP=-1 NAMSAT=MOSG =========================================================== Sub-domain organization =========================================================== ** Provide the MARK distribution as a marker to distingish: header-flow domain : MARK=1, tube-side-flow domain : MARK=2 shell-side-flow domain : MARK=3 header thermal domain : MARK=4 shell-side-thermal domain : MARK=5 and tube-wall-thermal domain : MARK=100 ** Provide the PRPS distribution for : shell material : PRPS=111, tubesheet material : PRPS=103 and tube wall material : PRPS=100 FIINIT(PRPS)=111. INTEGER(NNN); NNN=12; IG(1)=NNN PATCH(BACGRND,INIVAL,12,25,1,31,1,NZ,1,1) INIT( BACGRND,PRPS, 0.000E+00, 111.) PATCH(HEADSIDE,INIVAL,1,10,2.*NNN+1,NY,1,NZ,1,1) INIT( HEADSIDE,MARK, 0.000E+00, 1.) + INIT( HEADSIDE,PRPS, 0.000E+00, 0.) PATCH(TUBESIDE,INIVAL,1,10,NNN+1,24,1,NZ,1,1) INIT( TUBESIDE,MARK, 0.000E+00, 2.) + INIT( TUBESIDE,PRPS, 0.000E+00, 0.) PATCH(SHELSIDE,INIVAL,1,10,1,NNN,1,NZ,1,1) INIT( SHELSIDE,MARK, 0.000E+00, 3.) + INIT( SHELSIDE,PRPS, 0.000E+00, 0.) PATCH(TUBSHEET,INIVAL,11,26,19,21,1,NZ,1,1) INIT( TUBSHEET,PRPS, 0.000E+00, 103.) PATCH(ADDHEAD,INIVAL,14,23,22,29,1,NZ,1,1) INIT( ADDHEAD,PRPS, 0.000E+00, 0.) INIT( ADDHEAD,MARK, 0.000E+00, 4.) PATCH(ADDSHELL,INIVAL,14,23,7,18,1,NZ,1,1) INIT( ADDSHELL,PRPS, 0.000E+00, 0.) INIT( ADDSHELL,MARK, 0.000E+00, 5.) PATCH(TUBEWALL,INIVAL,16,21,9,18,1,NZ,1,1) INIT( TUBEWALL,PRPS, 0.000E+00, 100.) INIT( TUBEWALL,MARK, 0.000E+00, 100.) PATCH(SUPOR1,INIVAL,11,13,1,3,1,NZ,1,1) INIT( SUPOR1,PRPS, 0.000E+00, 0.) PATCH(SUPOR2,INIVAL,17,20,1,3,1,NZ,1,1) INIT( SUPOR2,PRPS, 0.000E+00, 0.) PATCH(SUPOR3,INIVAL,24,26,1,3,1,NZ,1,1) INIT( SUPOR3,PRPS, 0.000E+00, 0.) PATCH(WESLAYER,INIVAL,11,11,1,32,1,NZ,1,1) INIT( WESLAYER,PRPS, 0.000E+00, 0.0) PATCH(EASLAYER,INIVAL,26,26,1,32,1,NZ,1,1) INIT( EASLAYER,PRPS, 0.000E+00, 0.0) PATCH(NORLAYER,INIVAL,11,26,32,32,1,NZ,1,1) INIT( NORLAYER,PRPS, 0.000E+00, 0.0) ** Separate tube-fluid and shel-fluid sub-domains. CONPOR(0.0,NORTH,1,10,NNN,NNN,1,NZ) ** Separate thermal-fluid and stress analysis sub-domains. CONPOR(0.0,EAST,10,10,1,NY,1,NZ) ** Provide tube bank porosities. CONPOR(0.0,EAST,5,5,18,NY,1,NZ) CONPOR(0.0,NORTH,1,7,8,8,1,NZ) CONPOR(0.0,NORTH,4,10,4,4,1,NZ) + CONPOR(0.5,NORTH,2,9,NNN+1,24,1,NZ) + CONPOR(0.5,EAST, 2,9,NNN+2,24,1,NZ) ** Provide inserts by way of blockages to simulate header dividing plate, U-turnes, and baffles. CONPOR(0.0,NORTH,5,6,16,16,1,NZ) CONPOR(0.0,NORTH,4,7,15,15,1,NZ) CONPOR(0.0,NORTH,3,8,14,14,1,NZ) CONPOR(0.0,NORTH,2,9,NNN+1,NNN+1,1,NZ) + CONPOR(0.0,EAST,1,1,14,24,1,NZ) + CONPOR(0.0,EAST,2,2,15,24,1,NZ) + CONPOR(0.0,EAST,3,3,16,24,1,NZ) + CONPOR(0.0,EAST,4,4,17,24,1,NZ) + CONPOR(0.0,EAST,5,5,18,24,1,NZ) + CONPOR(0.0,EAST,6,6,17,24,1,NZ) + CONPOR(0.0,EAST,7,7,16,24,1,NZ) + CONPOR(0.0,EAST,8,8,15,24,1,NZ) + CONPOR(0.0,EAST,9,9,14,24,1,NZ) =========================================================== Property settings =========================================================== ** Settings for the calculation of wall distances in the header and in baffled shell side. DISWAL + WALL(NL1N,NORTH,1,7,8,8,1,NZ,1,1) + COVAL(NL1N,LTLS,1.,0.0) + WALL(NL1S,SOUTH,1,7,9,9,1,NZ,1,1) + COVAL(NL1S,LTLS,1.,0.0) WALL(NL2N,NORTH,4,10,4,4,1,NZ,1,1) COVAL(NL2N,LTLS,1.,0.0) WALL(NL2S,SOUTH,4,10,5,5,1,NZ,1,1) COVAL(NL2S,LTLS,1.,0.0) + WALL(NL3N,NORTH,1,10,12,12,1,NZ,1,1) + COVAL(NL3N,LTLS,1.,0.0) WALL(NL3S,SOUTH,1,10,1,1,1,NZ,1,1) COVAL(NL3S,LTLS,1.,0.0) + WALL(NL4W1,WEST,1,1,1,9,1,NZ,1,1) + COVAL(NL4W1,LTLS,1.,0.0) WALL(NL4W2,WEST,1,1,12,12,1,NZ,1,1) COVAL(NL4W2,LTLS,1.,0.0) + WALL(NL4E1,EAST,10,10,1,1,1,NZ,1,1) + COVAL(NL4E1,LTLS,1.,0.0) WALL(NL4E1,EAST,10,10,4,12,1,NZ,1,1) COVAL(NL4E1,LTLS,1.,0.0) + WALL(NL5N1,NORTH,1,10,NY,NY,1,NZ,1,1) + COVAL(NL5N1,LTLS,1.,0.0) WALL(NL5W1,WEST,1,1,25,28,1,NZ,1,1) COVAL(NL5W1,LTLS,1.,0.0) + WALL(NL5W2,WEST,1,1,31,32,1,NZ,1,1) + COVAL(NL5W2,LTLS,1.,0.0) WALL(NL5W3,WEST,6,6,25,ny,1,NZ,1,1) COVAL(NL5W3,LTLS,1.,0.0) + WALL(NL5E1,EAST,10,10,25,28,1,NZ,1,1) + COVAL(NL5E1,LTLS,1.,0.0) WALL(NL5E2,EAST,10,10,31,32,1,NZ,1,1) COVAL(NL5E2,LTLS,1.,0.0) + WALL(NL5E3,EAST,5,5,25,ny,1,NZ,1,1) + COVAL(NL5E3,LTLS,1.,0.0) PATCH(FIXL,CELL,1,10,13,24,1,NZ,1,1) COVAL(FIXL,LTLS,FIXVAL,0.) RHO1=GRND ENUL=GRND =========================================================== Thermal-fluid conditions settings =========================================================== ** Set the inflow and outflow conditions * West boundary; tube-fluid inlet ; 2 cells in header west wall PATCH(INTUBE,WEST,1,1,29,30,1,NZ,1,1) COVAL(INTUBE,P1,FIXFLU,1000.*U1IN) COVAL(INTUBE,U1,ONLYMS,U1IN) COVAL(INTUBE,TEMP,ONLYMS,0.0) * East boundary; tube-fluid outlet ; 2 cells in header east wall PATCH(OUTUBE,EAST,10,10,29,30,1,NZ,1,1) COVAL(OUTUBE,P1,1000.,0.) * East boundary; shell-fluid inlet ; 2 cells in bottom of shell west wall PATCH(INSHEL,EAST,10,10,2,3,1,NZ,1,1) COVAL(INSHEL,P1,FIXFLU,1.2*U1IN) COVAL(INSHEL,U1,ONLYMS,-U1IN) COVAL(INSHEL,TEMP,ONLYMS,1.0) * West boundary; shell-fluid outlet ; 2 cells in header east wall PATCH(OUSHEL,WEST,1,1,10,11,1,NZ,1,1) COVAL(OUSHEL,P1,1000.,0.) =========================================================== Stress analysis =========================================================== ** General settings BOOLEAN(CALSTR) REAL(EXCOLI,EXCOC1,EXCOC2,STIFFN,STIFC1,STIFC2,DSTRSW,DSTRSE,DSTRSS) REAL(POISSN) STRA=T;CALSTR=T STIFFN=2.e11 STIFC1=0.0;STIFC2=0.0 EXCOLI=1.e-03 EXCOC1=0.0;EXCOC2=0.0 POISSN=.3333 ISOLX=0;ISOLY=0;ISOLZ=0 ** Zero direct-stress condition on bottom shell side * West part PATCH(BASEW,NORTH,12,13,3,3,1,NZ,1,LSTEP) COVAL(BASEW,V1,FIXFLU,0.0) * Middle part PATCH(BASEM,NORTH,17,20,3,3,1,NZ,1,LSTEP) COVAL(BASEM,V1,FIXFLU,0.0) * East part PATCH(BASEE,NORTH,24,25,3,3,1,NZ,1,LSTEP) COVAL(BASEE,V1,FIXFLU,0.0) ** Zero direct-stress condition on the supports sides * 1st support west side PATCH(SUP1W,EAST,13,13,1,3,1,NZ,1,LSTEP) COVAL(SUP1W,U1,FIXFLU,0.0) * 1st support east side PATCH(SUP1E,EAST,16,16,1,3,1,NZ,1,LSTEP) COVAL(SUP1E,U1,FIXFLU,0.0) * 2nd support east side PATCH(SUP2W,EAST,20,20,1,3,1,NZ,1,LSTEP) COVAL(SUP2W,U1,FIXFLU,0.0) * 2nd support west side PATCH(SUP2E,EAST,23,23,1,3,1,NZ,1,LSTEP) COVAL(SUP2E,U1,FIXFLU,0.0) ** Zero direct-stresses on outer shell sides * West side PATCH(OUWW,EAST,11,11,4,31,1,NZ,1,LSTEP) COVAL(OUWW,U1,FIXFLU,0.0) * East side PATCH(OUWE,EAST,25,25,4,31,1,NZ,1,LSTEP) COVAL(OUWE,U1,FIXFLU,0.0) * North side PATCH(OUWN,NORTH,12,25,31,31,1,NZ,1,LSTEP) COVAL(OUWN,V1,FIXFLU,0.0) ** Zero direct-stresses on inner header sides * North side PATCH(HEDWN,NORTH,14,23,29,29,1,NZ,1,LSTEP) COVAL(HEDWN,V1,FIXFLU,0.0) * South side PATCH(HEDWS,NORTH,14,23,21,21,1,NZ,1,LSTEP) COVAL(HEDWS,V1,FIXFLU,0.0) * West side PATCH(HEDWW,EAST,13,13,22,29,1,NZ,1,LSTEP) COVAL(HEDWW,U1,FIXFLU,0.0) * East side PATCH(HEDWE,EAST,23,23,22,29,1,NZ,1,LSTEP) COVAL(HEDWE,U1,FIXFLU,0.0) ** Zero direct-stresses inner shell sides * North-west side PATCH(SHWNW,NORTH,14,15,18,18,1,NZ,1,LSTEP) COVAL(SHWNW,V1,FIXFLU,0.0) * North-east side PATCH(SHWNE,NORTH,22,23,18,18,1,NZ,1,LSTEP) COVAL(SHWNE,V1,FIXFLU,0.0) * South side PATCH(SHWS,NORTH,14,23,6,6,1,NZ,1,LSTEP) COVAL(SHWS,V1,FIXFLU,0.0) * East side PATCH(SHWW,EAST,13,13,7,18,1,NZ,1,LSTEP) COVAL(SHWW,U1,FIXFLU,0.0) * West side PATCH(SHWE,EAST,23,23,7,18,1,NZ,1,LSTEP) COVAL(SHWE,U1,FIXFLU,0.0) ** Zero direct-stresses on tube bundle * South side PATCH(TUBS,NORTH,16,21,8,8,1,NZ,1,LSTEP) COVAL(TUBS,V1,FIXFLU,0.0) * West side PATCH(TUBW,EAST,15,15,9,18,1,NZ,1,LSTEP) COVAL(TUBW,U1,FIXFLU,0.0) * East side PATCH(TUBE,EAST,21,21,9,18,1,NZ,1,LSTEP) COVAL(TUBE,U1,FIXFLU,0.0) ** Fix displacement at tubesheet west side PATCH(FIXW,EAST,11,11,19,21,1,NZ,1,LSTEP) COVAL(FIXW,U1,FIXVAL,0.0) ** Fix displacement at the tubesheet east side PATCH(FIXE,EAST,25,25,19,21,1,NZ,1,LSTEP) COVAL(FIXE,U1,FIXVAL,0.0) PIL fragment providing settings for stress and strain post-processing + STORE(EPSY,STRY) + OUTPUT(EPSY,Y,N,N,N,N,N) ; OUTPUT(STRY,Y,N,N,N,N,N) + FIINIT(EPSY)=0.0;FIINIT(STRY)=0.0 + STORE(EPSX,STRX) + OUTPUT(EPSX,Y,N,N,N,N,N) ; OUTPUT(STRX,Y,N,N,N,N,N) + FIINIT(EPSX)=0.0;FIINIT(STRX)=0.0 + STORE(EPST) ; OUTPUT(EPST,Y,N,N,N,N,N);FIINIT(EPST)=0.0 SPEDAT(SET,STRAIN,CALSTR,L,:CALSTR:) SPEDAT(SET,STRAIN,POISSN,R,:POISSN:) SPEDAT(SET,STRAIN,EXCOLI,R,:EXCOLI:) SPEDAT(SET,STRAIN,EXCOC1,R,:EXCOC1:) SPEDAT(SET,STRAIN,EXCOC2,R,:EXCOC2:) SPEDAT(SET,STRAIN,STIFFN,R,:STIFFN:) SPEDAT(SET,STRAIN,STIFC1,R,:STIFC1:) SPEDAT(SET,STRAIN,STIFC2,R,:STIFC2:) PLANTBEGIN ** Set the fluid densities: Header : water Tube side : water Shell side: airDEN1=1000. REGION() 1 DEN1=1000. REGION() 2 DEN1=1.2 REGION() 3 >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above three statements, followed by the pointer RHO1=GRND and parameterized REGION commands, instruct PLANT to make the density distributions as the distribition of in-cell marker values dictates. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Set fluid viscosities Header : effective viscosity proprtional to local velocity magnitude and distance to nearest wall. Tube side : Constant=0.01 Shell side: as for header VISL=1.*SQRT(U1**2+V1**2)*WDIS REGION() 1 VISL=0.01 REGION() 2 VISL=1.*SQRT(U1**2+V1**2)*WDIS REGION() 3 >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The above three statements do the same for viscosities as previous three has done for densities. Note that viscosities in the domains marked 1 and 3 are made proprtional to the products of local velocity magnitudes and distances to the nearest wall. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Non-linear resistance to tube-fluid flow exerted by tubes, throughout the U-tube array. PATCH(SS002U,PHASEM,1,10,1,NY,1,NZ,1,1) CO=.2*(U1**2+V1**2)**0.15 COVAL(SS002U,U1,GRND,0.0) CO=.2*(U1**2+V1**2)**0.15 COVAL(SS002U,V1,GRND,0.0) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Momentum sinks are introduced by above formulae over all cells having marker value appearing in the number of PATCH name, 002. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Non-linear resistance to shell-fluid flow exerted by tubes, throughout the shell-side. PATCH(SS003H,PHASEM,1,10,1,NY,1,NZ,1,1) CO=2.2*(U1**2+V1**2)**0.25 COVAL(SS003H,U1,GRND,0.0) CO=2.2*(U1**2+V1**2)**0.25 COVAL(SS003H,V1,GRND,0.0) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Momentum sinks are introduced by above formulae over all cells having marker value appearing in the number of PATCH name, 003. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Tube fluid heat transfer coefficient STORE(ALF2);FIINIT(ALF2)=0.0 ALF2=1.+1.*SQRT(U1**2+V1**2+TINY) REGION() 2 ** Shell fluid heat transfer coefficient STORE(ALF3);FIINIT(ALF3)=0.0 ALF3=1.+3.*SQRT(U1**2+V1**2+TINY) REGION() 3 >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Tube and shell fluid heat transfer coefficients, ALF2 and ALF3, are made dependent on local velocity magnitudes over the REGIONs marked 2 and 3 correspondingly. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Overall heat transfer coefficient STORE(HTC);FIINIT(HTC)=0.0 HTC=1./(1/ALF2+1/ALF3[,-IG(1),]) REGION() 2 HTC=1./(1/ALF3 +1/ALF2[,+IG(1),]) REGION() 3 >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Overall heat transfer coefficient, HTC, distribution are calculated by reference to appropriate local heat transfer coefficients in REGIONs 2 and 3. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Heat-exchange with shell-fluid, throughout the shell. PATCH(SS002T,PHASEM,1,NX,1,NY,1,NZ,1,1) CO =HTC VAL=TEMP[,-IG(1),] COVAL(SS002T,TEMP,GRND,GRND) ** Heat-exchange with tube-fluid, throughout the shell. PATCH(SS003S,PHASEM,1,NX,1,NY,1,NZ,1,1) CO =HTC VAL=TEMP[,+IG(1),] COVAL(SS003S,TEMP,GRND,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The PATCH names indicate the sub-domain cell markers , 2 and 3, over which the heat-exchange sources are applied. The indicial operations for TEMP are arranged in appropriate manner. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< =========================================================== Data preparation for conjugate and stress analysis =========================================================== ** Transfer shell fluid temperatures PATCH(SS005T,CELL,1,NX,1,NY,1,NZ,1,1) CO=1.e10 VAL=TEMP[-13,-6,] COVAL(SS005T,TEM1,GRND,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The temperatures of the shell fluid, TEMP, are transfered into the stress analysis sub-domain, MARK=5, to be used as TEM1. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Tube-wall temperature PATCH(SS100T,CELL,1,NX,1,NY,1,NZ,1,1) CO=1.e10 VAL=(ALF2[-13,+6,]*TEMP[-13,+6,]+$ ALF3[-13,-6,]*TEMP[-13,-6,])$ /(ALF2[-13,+6,]+ALF3[-13,-6,]+TINY) COVAL(SS100T,TEM1,GRND,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Here the tube wall temperatures, TEM1, are calculated in the sub-domain indicated by MARK=100 as PATCH name number specifies. TEM1s are computed via shell and tube fluid temperatures and heat transfer coefficients transfered from cooresponding sub-domains as indicial numbers show. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Transfer the header temperatures PATCH(SS004T,CELL,1,NX,1,NY,1,NZ,1,1) CO=1.e10 VAL=TEMP[-13,+3,] COVAL(SS004T,TEM1,GRND,GRND) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> The temperatures of the header tube fluid, TEMP, are transfered into the stress analysis sub-domain, MARK=4, to be used as TEM1. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< =========================================================== Output data processing =========================================================== ** Tube fluid velocities transfer STORE(UU1,VV1) UU1=U1[-13,+3,] REGION(14,23,22,29,1,NZ) VV1=V1[-13,+3,] REGION(14,23,22,29,1,NZ) UU1=U1[-13,+6,] REGION(14,23,7,18,1,NZ) VV1=V1[-13,+6,] REGION(14,23,7,18,1,NZ) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Tube fluid velocities are transfered from where they have been calculated for easy visualisation. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Shell fluid velocities transfer U2=U1[-13,-6,] REGION(14,23,7,18,1,NZ) V2=V1[-13,-6,] REGION(14,23,7,18,1,NZ) >>>>>>>>>>>>>>>>>>>>>> Comment begins >>>>>>>>>>>>>>>>>>>> Shell fluid velocities are transfered from where they have been calculated for easy visualisation. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND dvo1dt=excoli dmpstk=t DISTIL=T EX(P1)=7.325E+02; EX(U1)=9.487E-02; EX(U2)=5.730E-02 EX(V1)=1.371E-01; EX(V2)=2.435E-02; EX(TEMP)=1.982E-01 EX(VV1)=1.086E-01; EX(UU1)=3.593E-02; EX(HTC)=2.839E-01 EX(ALF3)=3.517E-01; EX(ALF2)=2.440E-01; EX(EPST)=1.679E-06 EX(STRX)=1.088E+05; EX(EPSX)=2.146E-06; EX(STRY)=2.937E+05 EX(EPSY)=3.295E-06; EX(LTLS)=1.575E-02; EX(WDIS)=5.966E-02 EX(TEM1)=2.956E-01; EX(MARK)=8.774E+00; EX(VISL)=1.851E-02 EX(DEN1)=2.406E+02; EX(PRPS)=3.482E+01; EX(NPOR)=9.014E-01 EX(EPOR)=8.425E-01 LIBREF=604 STOP