PHOTON USE p n4 up z msg contours of S at time = 0.1s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n8 up z msg contours of S at time = 0.20s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n12 up z msg contours of S at time = 0.35s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n16 up z msg contours of S at time = 0.40s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n20 up z msg contours of S at time = 0.50s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n24 up z msg contours of S at time = 0.60s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n28 up z msg contours of S at time = 0.70s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n32 up z msg contours of S at time = 0.80s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n36 up z msg contours of S at time = 0.90s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 MSG Press Enter to continue pause p n40 up z msg contours of S at time = 1.0s con s1 x 1 sh;.49 .52 40 msg velocity vectors vec x 1 msg - msg Press e to END enduse GROUP 1. Run title and other preliminaries text( Slumping of a liquid column by SEM method:146 FREE SURFACE EXAMPLES - Slumping of a column of liquid Scalar Equation Method (SEM) 2-dimensional (y-z), Cartesian, transient, elliptic simulation DISPLAY This case simulates the slumping of a liquid column that may arise, for example, when container walls break down. In addition an obstacle can be errected in the path of the liquid. liquid | column |------ z ^ | - - | | | - | +-----> | -- | | wall y | -- | | |_____|______|___ ///////////////// The run shows that use of PLANT results in compact Q1 coding to introduce the basic features of SEM method. It should be also noted that upwind convection scheme may not perform well enough suffering exessive false diffusion. The low dispersion schemes give significantly higher accuracy in free surface location calculation. For more details and comparison with experiment see the entry SEM of PHOENICS 2.0 and older and references cited therein. One of them, namely, of C.W.Hirt and B.D. Nichols in J. Comput. Phys., v. 39, 1981, pp.201- , is openly available. ENDDIS mesg(Slumping of a clolumn of liquid GROUP 2. Transience; time-step specification steady=f;lstep=40 tfrac(1)=-lstep;tfrac(2)= 0.025 GROUP 4. Y-direction grid specification grdpwr(y,10,2.0,1.0) GROUP 5. Z-direction grid specification grdpwr(z,10,0.5,1.0) GROUP 7. Variables stored, solved & named solutn(p1,y,y,y,n,n,n) solutn(v1,y,y,n,n,n,n) solutn(w1,y,y,n,n,n,n) * Free surface marker variable solve(s1,p1,v1,w1) GROUP 8. Terms (in differential equations) & devices ** activate the "gas-and-liquid algorithm", ie volumetric continui equation, and allow convection fluxes to be modified in GROUND gala=t terms(s1,n,y,n,y,p,p) GROUP 11. Initialization of variable or porosity fields fiinit( p1 )=0.0;fiinit( v1 )=0.0 fiinit( w1 )=0.0;fiinit(s1)=0.0 iniadd=f ** place the initial "pile" of liquid of which the slumping is to be simulated patch(liquid,inival,1,nx,1,5,1,5,1,1) init(liquid,s1,0.0,1.0) GROUP 13. Boundary conditions and special sources ** the pressure is held to zero along the open top boundary patch(refp,cell,1,nx,1,ny,nz,nz,1,lstep) coval(refp,p1, fixp , 0.0) ** provide for the gravity-force source of w1 patch(grav,phasem,1,nx,1,ny,1,nz,1,lstep) coval(grav,w1,fixflu,-9.81) PLANTBEGIN ** Efective pressure gradient sources PATCH(DPDZ,CELL,1,NX,1,NY,1,NZ,1,lstep)VAL=(1.-1./(1000.*S1+(1.-S1)))*AHIGH*(HIGH(P1)-P1) COVAL(DPDZ,W1,FIXFLU,GRND) PATCH(DPDY,CELL,1,NX,1,NY,1,NZ,1,lstep) VAL=(1.-1./(1000.*S1+(1.-S1)))*ANORTH*(NORTH(P1)-P1) COVAL(DPDY,V1,FIXFLU,GRND) PLANTEND GROUP 15. Termination of sweeps lsweep=10;liter(s1)=1 GROUP 16. Termination of iterations resref(p1)=1.e-6 resref(v1)=1.e-6 resref(w1)=1.e-6 GROUP 17. Under-relaxation devices relax(v1,falsdt,0.1) relax(w1,falsdt,0.1) SPEDAT(SET,GXMONI,TRANSIENT,L,F) GROUP 19. Data communicated by satellite to GROUND ** provide for the dumping of field data at each time step, for us by PHOTON isg2=2 idispa=4;csg1=n NAMSAT=MOSG rlolim=0.4;ruplim=0.6 varmin(s1)=0.0; varmax(s1)=1.0 GROUP 22. Spot-value print-out iymon=ny/2;izmon=nz/2 GROUP 23. Field print-out and plot control ntprin=lstep/2 output( p1 ,y,y,y,y,y,y) output( v1 ,y,y,y,y,y,y) output( w1 ,y,y,y,y,y,y) output( s1,y,y,y,y,y,y) tstswp=-1 dmpstk=t DISTIL=T EX(P1)=7.082E+01; EX(V1)=4.885E-01 EX(W1)=1.421E-01; EX(S1)=1.340E-01 LIBREF=146 STOP