PHOTON USE P GR OU X 9 Y 1 7 Z 3 3 COL 2 GR OU X 3 Y 1 7 Z 3 3 COL 2 GR OU Y 8 X 3 8 Z 3 3 COL 2 GR OU Y 1 X 3 8 Z 3 3 COL 2 GR OU X 6 Y 1 5 Z 5 6 COL 3 GR OU X 3 Y 1 5 Z 5 6 COL 3 GR OU Y 6 X 3 5 Z 5 6 COL 3 GR OU Y 1 X 3 5 Z 5 6 COL 3 GR OU X 5 Y 1 3 Z 7 7 COL 4 GR OU X 3 Y 1 3 Z 7 7 COL 4 GR OU Y 4 X 3 4 Z 7 7 COL 4 GR OU Y 1 X 3 4 Z 7 7 COL 4 GR OU X 11 Y 1 2 Z 11 12 COL 5 red GR OU X 7 Y 1 2 Z 11 12 COL 5 GR OU Y 3 X 7 10 Z 11 12 COL 5 GR OU Y 1 X 7 10 Z 11 12 COL 5 GR OU Y 1 X 1 12 Z 1 14 COL 9 RED msg FIRE INSIDE BUILDING ARRAY MSG Geometry msg Press Enter to continue pause red msg FIRE INSIDE BUILDING ARRAY msg Ground velocity field - perspective view set vec ref 20. vec y 1 sh msg Press Enter to continue pause vec off;red up x vi 0 1 0 vec y 1 sh msg FIRE INSIDE BUILDING ARRAY msg Ground velocity field - view from above msg Press Enter to continue pause vec off;red con h1 y 1 fil;.001 msg FIRE INSIDE BUILDING ARRAY msg Temperature field near the ground msg Press Enter to continue pause con off vi 1 1 1;up y;vi 1 0 0 vec x 5 sh msg FIRE INSIDE BUILDING ARRAY msg Velocity field - side view pause;vec off;red vi 1 1 1;vec y 1 sh msg FIRE INSIDE BUILDING ARRAY msg Ground velocity field - perspective view msg and msg Smoke plume surf smok y 0.05 msg Press Enter to end ENDUSE * * GROUP 1. Run identifiers and other preliminaries. DISPLAY This case presents the 3D problem of the combustion product movements in a building array fire. Combustion is not included, the fire source being peprsented in the model by surface heat source, but the non-uniform buoyancy forces are allowed to affect the mean flow. They are introduced by way of GROUND codings performed by PLANT. The similar in-door 2D situation has been simulated by Markatos, Malin and Cox in Int. J. of Heat and Mass Transfer, vol.25, No 1, pp. 63-75, 1982 ENDDIS TEXT(FIRE INSIDE BUILDING ARRAY:139 * GROUP 3. x-direction grid specification. NX=12 XULAST=76.60 XFRAC(1)=1.305E-01;XFRAC(2)=2.611E-01 XFRAC(3)=3.009E-01;XFRAC(4)=3.407E-01 XFRAC(5)=4.005E-01;XFRAC(6)=4.204E-01 XFRAC(7)=4.403E-01;XFRAC(8)=4.602E-01 XFRAC(9)=5.995E-01;XFRAC(10)=7.389E-01 XFRAC(11)=8.695E-01;XFRAC(12)=1. * GROUP 4. y-direction grid specification. NY=10 YVLAST=50. YFRAC(1)=7.625E-02;YFRAC(2)=1.525E-01 YFRAC(3)=1.830E-01;YFRAC(4)=2.440E-01 YFRAC(5)=3.050E-01;YFRAC(6)=3.355E-01 YFRAC(7)=3.660E-01;YFRAC(8)=5.773E-01 YFRAC(9)=7.887E-01;YFRAC(10)=1. * GROUP 5. z-direction grid specification. NZ=14 ZWLAST=179.3 ZFRAC(1)=1.394E-01;ZFRAC(2)=2.789E-01 ZFRAC(3)=3.469E-01;ZFRAC(4)=4.149E-01 ZFRAC(5)=4.405E-01;ZFRAC(6)=4.660E-01 ZFRAC(7)=4.830E-01;ZFRAC(8)=5.057E-01 ZFRAC(9)=5.284E-01;ZFRAC(10)=5.510E-01 ZFRAC(11)=6.361E-01;ZFRAC(12)=7.211E-01 ZFRAC(13)=8.606E-01;ZFRAC(14)=1. * GROUP 7. Variables (including porosities) named, * stored & solved. SOLVE(U1,V1,W1,P1,H1,SMOK) SOLUTN(P1,Y,Y,Y,N,N,N) STORE(VPOR,PRPS) * GROUP 8. Terms (in differential equations) and devices. TERMS(H1,N,Y,Y,N,Y,N) * GROUP 9. Properties of the medium (or media). RHO1=1.0;ENUL=1.4650E-05;ENUT=.137 * GROUP 11. Initialization of fields of variables, * porosities, etc. CONPOR(0,CELL,-3,-8,1,-7,3,-3) CONPOR(0,CELL,-3,-5,1,-5,5,-6) CONPOR(0,CELL,-3,-4,1,-3,7,-7) CONPOR(0,CELL,-7,-10,1,-2,-11,-12) FIINIT(V1)=8.57;FIINIT(W1)=8.57 FIINIT(H1)=300. * GROUP 13. Boundary conditions and special sources PATCH(INL,LOW,1,NX,1,NY,1,1,1,1) COVAL(INL,U1,ONLYMS,8.57) COVAL(INL,W1,ONLYMS,8.57) COVAL(INL,H1,ONLYMS,300.0) COVAL(INL,SMOK,ONLYMS,0.0) COVAL(INL,P1,FIXFLU,8.57*RHO1) PATCH(INL1,WEST,1,1,1,NY,1,NZ,1,1) COVAL(INL1,U1,ONLYMS,8.57) COVAL(INL1,W1,0.,8.57) COVAL(INL1,H1,ONLYMS,300.0) COVAL(INL1,SMOK,ONLYMS,0.0) COVAL(INL1,P1,FIXFLU,8.57*RHO1) PATCH(OUT,HIGH,1,NX,1,NY,NZ,NZ,1,1) COVAL(OUT,P1,FIXP,0.) COVAL(OUT,H1,ONLYMS,300.) PATCH(OUT2,EAST,NX,NX,1,NY,1,NZ,1,1) COVAL(OUT2,P1,FIXP,0.) COVAL(OUT2,H1,ONLYMS,300.) PATCH(OUT3,NORTH,1,NX,NY,NY,1,NZ,1,1) COVAL(OUT3,P1,FIXP,0.) COVAL(OUT3,H1,ONLYMS,300.) PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,1) COVAL(GROUND,W1,LOGLAW,0.0) COVAL(GROUND,U1,LOGLAW,0.0) PATCH(FIRE,SOUTH,6,6,1,1,9,9,1,1) COVAL(FIRE,H1,FIXFLU,1.e4) COVAL(FIRE,SMOK,FIXVAL,1.) * Boussinesq approximation for buoyancy force. RG(1)=9.81;RG(2)=300.0 PLANTBEGIN PATCH(ARCH,PHASEM,1,NX,1,NY,1,NZ,1,1)VAL=-RG(1)*(RG(2)-H1)/300. COVAL(ARCH,V1,FIXFLU,GRND) PLANTEND * GROUP 15. Termination criteria for sweeps and * outer iterations. LSWEEP=100 * GROUP 17. Under-relaxation and related devices. REAL(MAXV,MINL,RELX) MAXV=8.57;MINL=3.8462 RELX=1 RELAX(P1,LINRLX,0.8) RELAX(U1,FALSDT,MINL/MAXV*RELX) RELAX(V1,FALSDT,MINL/MAXV*RELX) RELAX(W1,FALSDT,MINL/MAXV*RELX) RELAX(H1,FALSDT,MINL/MAXV*RELX) * GROUP 19. Data communicated by SATELLITE to GROUND NAMSAT=MOSG * GROUP 22. Location of spot-value & frequency of * residual printout. IXMON=8;IYMON=6;IZMON=9 * GROUP 23. Variable-by-variable field printout and plot * and/or tabulation of spot-values and residuals. ITABL=3;NPLT=1 tstswp=-1 dmpstk=t DISTIL=T EX(P1)=1.042E+01; EX(U1)=7.497E+00; EX(V1)=8.930E-01 EX(W1)=7.633E+00; EX(H1)=2.853E+02; EX(PRPS)=1.202E+01 EX(VPOR)=9.440E-01; EX(SMOK)=3.745E-03 LIBREF=139 STOP