TALK=T;RUN( 1, 1)
 
 ************************************************************
   Q1 created by VDI menu, Version 2020, Date 13/01/21
 CPVNAM=VDI; SPPNAM=Core
 ************************************************************
  Echo DISPLAY / USE settings
   PHOTON USE
   AUTOPLOT
   file
   phida 3
 
   clear
   msg POLYMER MELT 2D PIPE FLOW
   msg Reynolds number = 1.E-4 Power index = 0.463
   msg Pressure (P1) profile
   msg Blue line --- PHOENICS solution
   msg crosses ---   analytical solution
   pause
   da 1 p1 y 1;da 1 pa y 1
   col3 1;blb4 2
   redr
   pause
   msg press  to continue
   clear
   msg Velocity (W1) profile
   da 1 w1 z 35;da 1 wa z 35
   col3 1;blb4 2
   pause
   msg press  to continue
   clear
   msg Bulk temperature profile
   da 1 tblk y m
   col3 1
   pause
   msg press  to end
   clear
   msg Nusselt number profile
   da 1 nusn y m
   col3 1
   scale y -10 30.
   pause
   msg press  to end
   pause
   end
   END_USE
 ************************************************************
 IRUNN = 1 ;LIBREF = 113
 ************************************************************
  Group 1. Run Title
 TEXT(113 Heat transfer to molten polymer flow)
 ************************************************************
  Echo save-block settings for Group  1
  save1begin
  This case concerns heat transfer to steady molten polymer
  flow in a circular tube with a diameter of 0.25cm and a
  length of 800 diameters. The rheology of the melt flow is
  described by a power-law temperature-dependent non-Newtonian
  fluid. The fluid enters at 130degC with a bulk velocity of
  0.15m/s and the pipe wall is held at a uniform temperature
  of 160degC along its entire length. A fully-developed
  velocity profile is specified at the inlet, but the inlet
  temperature is uniform.
 
  The power-law Reynolds number and Prandtl number are 1.E-4,
  29.6E6, respectively. The Brinkman number is equal to 83,
  so that viscous dissipation has a significant effect on
  the temperature rise along the pipe.
 
  The physical properties of the polymer are assigned values
  for a typical high-density polyethylene melt. The fluid
  density is 794 kg/m^3, the specific heat is 2.51kJ/kgK, and
  the thermal conductivity is 0.255 W/m.K. The apparent
  dynamic viscosity is computed from:
 
    emu = K*G^(n-1)*Ft
 
  where G is the mean strain rate, n the flow-behaviour index,
  set to 0.453, and K the consistency set equal to 2.82e4
  Pa.s^(n-1). The temperature function Ft is computed from
 
    Ft = exp( -B*n*(T-Tm) )
 
   where B=0.024 K^-1 and Tm = 399.5K.
 
  The main tasks are to predict the temperature rise and
  asymptotic local Nusselt number, and then compare the
  results with the numerical results reported by:
  E.E.Agur an J.Vlachopoulos, Heat Transfer to Molten
  Polymer Flow in Tubes, J.Applied Polymer Science, Vol.26,
  765-773, (1981). The following results are obtained:
 
                           Tout (degC)        Nuss
    PHOENICS                 202.4            9.45
    Agur & Vachopoulos       204.7            8.97
 
  The PHOENICS results correspond to a Graetz number of
  Gr=0.27, whereas the target data are for Gz = 1.0. Therefore,
  improved agreement is likely if the simulated pipe length
  is increased by a factor of 4.
  save1end
 ************************************************************
  Group 2. Transience
 STEADY = T
 ************************************************************
  Groups 3, 4, 5  Grid Information
    * Overall number of cells, RSET(M,NX,NY,NZ,tolerance)
 RSET(M,1,20,60,8.333333E-05)
    * Cylindrical-polar grid
 CARTES=F
 ************************************************************
  Group 6. Body-Fitted coordinates
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
    * Non-default variable names
 NAME(128)=BIGZ ;NAME(129)=QLOC
 NAME(130)=SRM1 ;NAME(131)=SPH1
 NAME(132)=TFNN ;NAME(133)=QWAL
 NAME(134)=NUSN ;NAME(135)=TBLK
 NAME(136)=LHTC ;NAME(137)=CNH1
 NAME(138)=HTCO ;NAME(139)=THET
 NAME(140)=KOND ;NAME(141)=TEM1
 NAME(142)=GRNO ;NAME(143)=WDIS
 NAME(144)=STRS ;NAME(146)=BTAU
 NAME(147)=PA ;NAME(148)=WA
 NAME(149)=GEN1 ;NAME(150)=VISL
    * Solved variables list
 SOLVE(P1,V1,W1,TEM1)
    * Stored variables list
 STORE(VISL,GEN1,WA,PA,BTAU,STRS,WDIS,GRNO)
 STORE(KOND,THET,HTCO,CNH1,LHTC,TBLK,NUSN,QWAL)
 STORE(TFNN,SPH1,SRM1,QLOC,BIGZ)
    * Additional solver options
 SOLUTN(P1,Y,Y,Y,N,N,Y)
 SOLUTN(V1,Y,Y,Y,N,N,Y)
 SOLUTN(W1,Y,Y,Y,N,N,Y)
 SOLUTN(TEM1,Y,Y,Y,N,N,Y)
 
 ************************************************************
  Echo save-block settings for Group  7
  save7begin
  save7end
 ************************************************************
  Group 8. Terms & Devices
 TERMS (TEM1,Y,Y,Y,Y,N,Y)
 NEWENL = T
 ************************************************************
  Group 9. Properties
 TEMP0 =273.149994
 RHO1 =794.
 ENUL = GRND4
 ENULA =2.82E+04 ;ENULB =0.453 ;ENULC =0.
 CP1 =2510.
 DISWAL
 ENUT =1.0E-10
 PRNDTL(TEM1)=-0.255
 ************************************************************
  Echo save-block settings for Group  9
  save9begin
REAL(RIN,DIN,WIN,DPDZ,REY,AN,POW2,BETA,ZETA,REYMR,FRIC)
REAL(PLEN,CONSI,LDD,RGRENO,NUST,QIN,AWALL,AIN,MFIN,EFIN)
REAL(PRNO,THKON,PECNO,PLPRNO,TIN,TWAL,EA,RGAS,CONS0,TREF,ACON)
REAL(BRINKNO,ECKTNO)
 
ENUL=GRND4; IENULA=0   ! Power-law rheology model
 
RIN=0.00125;DIN=2.*RIN ! Pipe diameter
PLEN=800.*DIN           ! Pipe length
WIN=0.15               ! Inlet velocity
AIN=0.05*RIN*RIN
AIN
QIN=WIN*AIN
QIN
MFIN=RHO1*QIN
MFIN
 
 
TIN =130.                          ! Inlet temperature
TWAL=160.                         ! Wall temperature
 
EFIN=MFIN*CP1*(TIN+TEMP0)
EFIN
 
AN=0.453               ! Power-law exponent
                     AN=1.0   ! Newtonian fluid
DIN
WIN
PLEN
AWALL=0.05*DIN*PLEN
AWALL                   ! surface area of pipe wall
ZETA=8; BETA=(3.*AN+1.)/(4.*AN)
ZETA;BETA
CONSI=28200.0
              CONSI=100.  ! Newtonian fluid
REY=RHO1*WIN**(2.0-AN)*DIN**AN/CONSI ! Power-law Reynolds number
CONSI;AN
ENULA=CONSI            ! Consistency index
ENULB=AN
ENULA;ENULB
    * Generalised Metzner-Reed Reynolds number
REYMR=REY/(ZETA**(AN-1.)*BETA**AN)
REY;REYMR
FRIC=2.*ZETA/REYMR
FRIC
 
DPDZ=(4.*RHO1*WIN**2/DIN)/REY*((2.+6.*AN)/AN)**AN
DPDZ
DPDZ=(2.*RHO1*WIN**2/DIN)*FRIC ! Alternative calculation
DPDZ
      ** Analytical axial velocity profile
POW2=(1.+AN)/AN
(stored of WA is WIN*(1.+3.*AN)*(1.-(YG/RIN)^POW2)/(1.+AN))
      ** Analytical pressure solution
(make1 zgnz is 0)
(store1 zgnz is zg with IF(IZ.EQ.NZ))
(print zgnz is zgnz)
(stored of PA is -DPDZ*(ZG-ZGNZ))
 
   ** Thermal properties
THKON=-1.*PRNDTL(TEM1)            ! Thermal conductivity
 
 
CP1 = 2510.   ! Specific heat
CP1
PLPRNO=CONSI*CP1*((WIN/DIN)**(AN-1))/THKON ! Power-law Prandtl number
PLPRNO
CP1
PRNO=PLPRNO/(WIN/DIN)**(AN-1)       ! Prandtl number
PRNO
PECNO=RHO1*CP1*WIN*DIN/THKON      ! Peclet Number = PLPRNO*REY
PECNO
 
REAL(GZNO,BIGZ)  ! Graetz number Gz = z/(D*Peclet)
GZNO=PLEN/(DIN*PECNO)
GZNO
BIGZ=4.*GZNO
BIGZ        !
 
ECKTNO=WIN*WIN/(CP1*(TWAL-TIN))   ! Eckert number
ECKTNO
BRINKNO=ECKTNO*PRNO               ! Brinkman number
BRINKNO
 
 
      *** Temperature-dependent consistency
 
IENULB=2
IF(IENULB.EQ.2) THEN          ! fT = exp(enulf*(T-enulg))
ENULF=-0.024*AN; ENULG=126.35     ! enulg = 399.5k
ENDIF
 
  *** compute bulk fluid temperature
(make1 TSUM IS 0.0)
(make1 FSUM is 0.0)
(make1 TSLB is 0.0)
    ** Start of IZ cycle
DO II=1,NZ
PATCH(PATCH:II:,CELL,1,NX,1,NY,:II:,:II:,1,1)
(store1 TSUM at PATCH:II: is SUM(CNH1*TEM1))
(store1 FSUM at PATCH:II: is SUM(CNH1))
(store1 TSLB at PATCH:II: is TSUM/FSUM)
(stored of TBLK at PATCH:II: is TSLB)
   ** End of IZ cycle
ENDDO
   ** compute local Nusselt number, Graetz number, etc
(stored of THET is (TEM1-:TWAL:)/(:TIN:-:TWAL:))
(stored of QWAL is HTCO*(:TWAL:-TEM1) with IF(IY.EQ.NY))
(stored of LHTC is QWAL/(:TWAL:-TBLK) with IF(IY.EQ.NY))
(stored of NUSN is LHTC*:DIN:/:THKON: with IF(IY.EQ.NY))
(stored of LHTC is LHTC[,,-1] with IF(IZ.EQ.NZ))
(stored of NUSN is NUSN[,,-1] with IF(IZ.EQ.NZ))
(stored of TBLK is TBLK[,,-1] with IF(IZ.EQ.NZ))
(stored of QLOC is QWAL*ANORTH with IF(IY.EQ.NY))
(stored of GRNO is ZG/(DIN*PECNO))
(stored of BIGZ is 4.*GRNO)
    ** print main parameters to inforout file
(make1 tbo is 0.0)
(make1 nuss is 0.0)
(make1 grzn is 0.0)
(make1 zbig is 0.0)
(store1 tbo is TBLK[1,1,60])
(store1 nuss is NUSN[1,20,60])
(store1 grzn is GRNO[1,1,60])
(store1 zbig is BIGZ[1,1,60])
(print tb_out is tbo)
(print nuss_no is nuss)
(print greatz_no is grzn)
(print big_z is zbig)
  save9end
 ************************************************************
  Group 10.Inter-Phase Transfer Processes
 ************************************************************
  Group 11.Initialise Var/Porosity Fields
 FIINIT(W1)=0.15 ;FIINIT(TEM1)=130.
 FIINIT(WDIS)=0.1 ;FIINIT(GEN1)=1.001E-10
 FIINIT(VISL)=1.001E-10
 
 PATCH(IINIT, INIVAL, 0, 0, 0, 0, 0, 0, 1, 1)
 
 
 INIADD = F
 ************************************************************
  Echo save-block settings for Group 11
  save11begin
     ** Use isothermal, analytical solution as an initial
        guess, simply to reduce the number of sweeps to
        convergence for this library case.
(INITIAL of P1 at IINIT is -DPDZ*(ZG-:PLEN:))
(INITIAL of W1 at IINIT is WCON*(1.-(YG/RIN)^POW2))
  save11end
 ************************************************************
  Group 12. Convection and diffusion adjustments
   No PATCHes used for this Group
 ************************************************************
  Group 13. Boundary & Special Sources
 
 PATCH(PATCH1, CELL, 1, 1, 1, 20, 1, 1, 1, 1)
 
 PATCH(PATCH2, CELL, 1, 1, 1, 20, 2, 2, 1, 1)
 
 PATCH(PATCH3, CELL, 1, 1, 1, 20, 3, 3, 1, 1)
 
 PATCH(PATCH4, CELL, 1, 1, 1, 20, 4, 4, 1, 1)
 
 PATCH(PATCH5, CELL, 1, 1, 1, 20, 5, 5, 1, 1)
 
 PATCH(PATCH6, CELL, 1, 1, 1, 20, 6, 6, 1, 1)
 
 PATCH(PATCH7, CELL, 1, 1, 1, 20, 7, 7, 1, 1)
 
 PATCH(PATCH8, CELL, 1, 1, 1, 20, 8, 8, 1, 1)
 
 PATCH(PATCH9, CELL, 1, 1, 1, 20, 9, 9, 1, 1)
 
 PATCH(PATCH10, CELL, 1, 1, 1, 20, 10, 10, 1, 1)
 
 PATCH(PATCH11, CELL, 1, 1, 1, 20, 11, 11, 1, 1)
 
 PATCH(PATCH12, CELL, 1, 1, 1, 20, 12, 12, 1, 1)
 
 PATCH(PATCH13, CELL, 1, 1, 1, 20, 13, 13, 1, 1)
 
 PATCH(PATCH14, CELL, 1, 1, 1, 20, 14, 14, 1, 1)
 
 PATCH(PATCH15, CELL, 1, 1, 1, 20, 15, 15, 1, 1)
 
 PATCH(PATCH16, CELL, 1, 1, 1, 20, 16, 16, 1, 1)
 
 PATCH(PATCH17, CELL, 1, 1, 1, 20, 17, 17, 1, 1)
 
 PATCH(PATCH18, CELL, 1, 1, 1, 20, 18, 18, 1, 1)
 
 PATCH(PATCH19, CELL, 1, 1, 1, 20, 19, 19, 1, 1)
 
 PATCH(PATCH20, CELL, 1, 1, 1, 20, 20, 20, 1, 1)
 
 PATCH(PATCH21, CELL, 1, 1, 1, 20, 21, 21, 1, 1)
 
 PATCH(PATCH22, CELL, 1, 1, 1, 20, 22, 22, 1, 1)
 
 PATCH(PATCH23, CELL, 1, 1, 1, 20, 23, 23, 1, 1)
 
 PATCH(PATCH24, CELL, 1, 1, 1, 20, 24, 24, 1, 1)
 
 PATCH(PATCH25, CELL, 1, 1, 1, 20, 25, 25, 1, 1)
 
 PATCH(PATCH26, CELL, 1, 1, 1, 20, 26, 26, 1, 1)
 
 PATCH(PATCH27, CELL, 1, 1, 1, 20, 27, 27, 1, 1)
 
 PATCH(PATCH28, CELL, 1, 1, 1, 20, 28, 28, 1, 1)
 
 PATCH(PATCH29, CELL, 1, 1, 1, 20, 29, 29, 1, 1)
 
 PATCH(PATCH30, CELL, 1, 1, 1, 20, 30, 30, 1, 1)
 
 PATCH(PATCH31, CELL, 1, 1, 1, 20, 31, 31, 1, 1)
 
 PATCH(PATCH32, CELL, 1, 1, 1, 20, 32, 32, 1, 1)
 
 PATCH(PATCH33, CELL, 1, 1, 1, 20, 33, 33, 1, 1)
 
 PATCH(PATCH34, CELL, 1, 1, 1, 20, 34, 34, 1, 1)
 
 PATCH(PATCH35, CELL, 1, 1, 1, 20, 35, 35, 1, 1)
 
 PATCH(PATCH36, CELL, 1, 1, 1, 20, 36, 36, 1, 1)
 
 PATCH(PATCH37, CELL, 1, 1, 1, 20, 37, 37, 1, 1)
 
 PATCH(PATCH38, CELL, 1, 1, 1, 20, 38, 38, 1, 1)
 
 PATCH(PATCH39, CELL, 1, 1, 1, 20, 39, 39, 1, 1)
 
 PATCH(PATCH40, CELL, 1, 1, 1, 20, 40, 40, 1, 1)
 
 PATCH(PATCH41, CELL, 1, 1, 1, 20, 41, 41, 1, 1)
 
 PATCH(PATCH42, CELL, 1, 1, 1, 20, 42, 42, 1, 1)
 
 PATCH(PATCH43, CELL, 1, 1, 1, 20, 43, 43, 1, 1)
 
 PATCH(PATCH44, CELL, 1, 1, 1, 20, 44, 44, 1, 1)
 
 PATCH(PATCH45, CELL, 1, 1, 1, 20, 45, 45, 1, 1)
 
 PATCH(PATCH46, CELL, 1, 1, 1, 20, 46, 46, 1, 1)
 
 PATCH(PATCH47, CELL, 1, 1, 1, 20, 47, 47, 1, 1)
 
 PATCH(PATCH48, CELL, 1, 1, 1, 20, 48, 48, 1, 1)
 
 PATCH(PATCH49, CELL, 1, 1, 1, 20, 49, 49, 1, 1)
 
 PATCH(PATCH50, CELL, 1, 1, 1, 20, 50, 50, 1, 1)
 
 PATCH(PATCH51, CELL, 1, 1, 1, 20, 51, 51, 1, 1)
 
 PATCH(PATCH52, CELL, 1, 1, 1, 20, 52, 52, 1, 1)
 
 PATCH(PATCH53, CELL, 1, 1, 1, 20, 53, 53, 1, 1)
 
 PATCH(PATCH54, CELL, 1, 1, 1, 20, 54, 54, 1, 1)
 
 PATCH(PATCH55, CELL, 1, 1, 1, 20, 55, 55, 1, 1)
 
 PATCH(PATCH56, CELL, 1, 1, 1, 20, 56, 56, 1, 1)
 
 PATCH(PATCH57, CELL, 1, 1, 1, 20, 57, 57, 1, 1)
 
 PATCH(PATCH58, CELL, 1, 1, 1, 20, 58, 58, 1, 1)
 
 PATCH(PATCH59, CELL, 1, 1, 1, 20, 59, 59, 1, 1)
 
 PATCH(PATCH60, CELL, 1, 1, 1, 20, 60, 60, 1, 1)
 
 EGWF = T
 ************************************************************
  Echo save-block settings for Group 13
   SAVE13BEGIN
       ** Inform for fully-developed velocity profile
REAL(WCON)
WCON=WIN*(1.+3.*AN)/(1.+AN)
   (SOURCE OF P1 at INLET is COVAL(FIXFLU,RHO1*WCON*(1.-(YG/RIN)^POW2)) with AREA)
   (SOURCE OF W1 at INLET is COVAL(ONLYMS,WCON*(1.-(YG/RIN)^POW2)) with AREA)
  SAVE13END
 ************************************************************
  Group 14. Downstream Pressure For PARAB
 ************************************************************
  Group 15. Terminate Sweeps
 LSWEEP = 5000
 RESREF(P1)=5.0E-16 ;RESREF(V1)=5.0E-16
 RESREF(W1)=5.0E-16
 RESFAC =1.0E-05
 ************************************************************
  Group 16. Terminate Iterations
 LITER(P1)=200 ;LITER(TEM1)=50
 ************************************************************
  Group 17. Relaxation
 RELAX(P1 ,LINRLX,0.99 )
 RELAX(V1 ,LINRLX,0.5 )
 RELAX(W1 ,LINRLX,0.8 )
 RELAX(TEM1,LINRLX,0.25 )
 RELAX(LTLS,LINRLX,1. )
 OVRRLX =1.
 ************************************************************
  Group 18. Limits
 VARMAX(P1)=1.0E+12 ;VARMIN(P1)=-1.0E+04
 VARMAX(V1)=100. ;VARMIN(V1)=-100.
 VARMAX(W1)=100. ;VARMIN(W1)=-100.
 VARMAX(TEM1)=3000. ;VARMIN(TEM1)=-204.862488
 ************************************************************
  Group 19. EARTH Calls To GROUND Station
 GENK = T
 PARSOL = F
 CONWIZ = T
     ISG6 = 2
 ISG62 = 1
 SPEDAT(SET,OUTPUT,NOFIELD,L,T)
 SPEDAT(SET,GXMONI,PLOTALL,L,T)
 SPEDAT(SET,RLXFAC,REFVEL,R,0.1)
 SPEDAT(SET,MAXINC,V1,R,2.5)
 SPEDAT(SET,MAXINC,W1,R,2.5)
 ************************************************************
  Group 20. Preliminary Printout
 DISTIL = T ;NULLPR = F
 NDST = 0
 DSTTOL =1.0E-02
 EX(P1)=4.498E+08 ;EX(V1)=2.095E-05
 EX(W1)=0.1748 ;EX(BIGZ)=0.5459
 EX(QLOC)=7.833E-03 ;EX(SRM1)=249.199997
 EX(SPH1)=2510. ;EX(TFNN)=0.5494
 EX(QWAL)=1860. ;EX(NUSN)=3.458
 EX(TBLK)=187. ;EX(LHTC)=352.700012
 EX(CNH1)=4.573E-07 ;EX(HTCO)=607.5
 EX(THET)=0.8912 ;EX(KOND)=0.255
 EX(TEM1)=183.5 ;EX(GRNO)=0.1365
 EX(WDIS)=4.316E-04 ;EX(STRS)=18.620001
 EX(LTLS)=2.342E-07 ;EX(BTAU)=7.028E+06
 EX(PA)=8.264E+08 ;EX(WA)=0.1706
 EX(GEN1)=9.281E+04 ;EX(VISL)=2.178
 ************************************************************
  Group 21. Print-out of Variables
 OUTPUT(SRM1,Y,N,Y,N,Y,Y)
 OUTPUT(TBLK,Y,N,Y,N,Y,Y)
 OUTPUT(PA  ,Y,N,Y,N,Y,Y)
 OUTPUT(WA  ,Y,N,Y,N,Y,Y)
 OUTPUT(VISL,Y,N,Y,N,Y,Y)
 ************************************************************
  Group 22. Monitor Print-Out
 IXMON = 1 ;IYMON = 16 ;IZMON = 50
 NPRMON = 100000
 NPRMNT = 1
 TSTSWP = -1
 ************************************************************
  Group 23.Field Print-Out & Plot Control
 NPRINT = 100000
 NYPRIN = 1
 NZPRIN = 1
 YZPR = T
 ISWPRF = 1 ;ISWPRL = 100000
   No PATCHes used for this Group
 ************************************************************
  Group 24. Dumps For Restarts
 ************************************************************
  Echo save-block settings for Group 24
  save24begin
DISTIL=T
EX(P1  )=4.498E+08 ; EX(V1  )=2.095E-05
EX(W1  )=1.748E-01 ; EX(BIGZ)=5.459E-01
EX(QLOC)=7.833E-03 ; EX(SRM1)=2.492E+02
EX(SPH1)=2.510E+03 ; EX(TFNN)=5.494E-01
EX(QWAL)=1.860E+03 ; EX(NUSN)=3.458E+00
EX(TBLK)=1.870E+02 ; EX(LHTC)=3.527E+02
EX(CNH1)=4.573E-07 ; EX(HTCO)=6.075E+02
EX(THET)=8.912E-01 ; EX(KOND)=2.550E-01
EX(TEM1)=1.835E+02 ; EX(GRNO)=1.365E-01
EX(WDIS)=4.316E-04 ; EX(STRS)=1.862E+01
EX(LTLS)=2.342E-07 ; EX(BTAU)=7.028E+06
EX(PA  )=8.264E+08 ; EX(WA  )=1.706E-01
EX(GEN1)=9.281E+04 ; EX(VISL)=2.178E+00
  save24end
 
 GVIEW(P,-0.999988,4.999913E-03,0.)
 GVIEW(UP,4.999913E-03,0.999988,0.)
 GVIEW(VDIS,0.9005)
 GVIEW(CENTRE,6.239588E-05,6.25E-04,0.9375)
 
> DOM,    SIZE,        1.000000E-01, 1.250000E-03, 2.000000E+00
> DOM,    MONIT,       5.000000E-02, 1.047191E-03, 1.716208E+00
> DOM,    SCALE,       1.000000E+00, 5.000000E+01, 1.000000E+00
> DOM,    INCREMENT,   1.000000E-02, 1.000000E-02, 1.000000E-02
  > GRID,   RSET_X_1,      1, 1.000000E+00
> GRID,   RSET_Y_1,     20,-1.040000E+00,G
> GRID,   RSET_Z_1,    -60, 1.200000E+00
 
> OBJ,    NAME,        INLET
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ,    SIZE,        1.000000E-01, TO_END,       0.000000E+00
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    poldef
> OBJ,    TYPE,        INLET
> OBJ,    PRESSURE,     P_AMBIENT
> OBJ,    VELOCITY,    0. ,0. ,0.15
> OBJ,    TEMPERATURE, 130.
 
> OBJ,    NAME,        OUTL
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, AT_END
> OBJ,    SIZE,        1.000000E-01, TO_END,       0.000000E+00
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    poldef
> OBJ,    TYPE,        OUTLET
> OBJ,    PRESSURE,    0.
> OBJ,    TEMPERATURE,  T_AMBIENT
> OBJ,    COEFFICIENT, 100.
> OBJ,    VELOCITY,    0. ,0. , SAME
 
> OBJ,    NAME,        WALL
> OBJ,    POSITION,    0.000000E+00, AT_END,       0.000000E+00
> OBJ,    SIZE,        1.000000E-01, 0.000000E+00, TO_END
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    poldef
> OBJ,    TYPE,        PLATE
> OBJ,    SURF_TEMP,   0. ,160.
STOP