TALK=T;RUN( 1, 1) ************************************************************ Q1 created by VDI menu, Version 2020, Date 13/01/21 CPVNAM=VDI; SPPNAM=Core ************************************************************ Echo DISPLAY / USE settings PHOTON USE AUTOPLOT file phida 3 clear msg POWELL-EYRING PIPE FLOW msg Reynolds number = 600 msg Pressure (P1) profile msg Blue line --- PHOENICS solution msg crosses --- analytical solution pause da 1 p1 y 1;da 1 pa y 1 col3 1;blb4 2 redr pause msg pressto end pause end END_USE ************************************************************ IRUNN = 1 ;LIBREF = 105 ************************************************************ Group 1. Run Title TEXT(105 2d pipe flow - Powell-Eyring fluid ) ************************************************************ Echo save-block settings for Group 1 save1begin This case concerns the steady laminar flow of blood in a circular pipe. The blood is represented by a Powell- Eyring (PE) non-Newtonian fluid, whose apparent viscosity is given by: emua = emui + {(emu0-emui)/T}*[Sinh^-1(T*G)]/G where G is the mean strain rate, emui is the infinite-shear-rate viscosity and emu0 is the zero-shear-rate viscosity and T is the time constant. Analytical solutions for the laminar flow of PE fluids in circular pipes have been reported by: Govier, G.W. & Aziz,K. The flow of complex mixtures in pipes, Section 2.23, p193, R.E.Kreiger Pub. Co., Huntington, New York, (1977). The bulk inlet velocity is 0.1m/s and the fluid density is 1065 kg/m^3. The pipe diameter and length are 0.02m and 0.5m, respectively; and the rheology parameters are set to: emu0=0.055 Pa.s; emui=0.0035 Pa.s and T = 5.5s. The flow Reynolds number based on emui is about 600. The task is to predict the pressure drop for a given Reynolds number, and then compare the results with the analytical solution. The inform facility is used to compute the analytical pressure profile, which is stored in PA. save1end ************************************************************ Group 2. Transience STEADY = T ************************************************************ Groups 3, 4, 5 Grid Information * Overall number of cells, RSET(M,NX,NY,NZ,tolerance) RSET(M,1,20,40,8.333333E-05) * Cylindrical-polar grid CARTES=F ************************************************************ Group 6. Body-Fitted coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd * Non-default variable names NAME(141)=ETA ;NAME(142)=STRS NAME(143)=WA ;NAME(144)=PA NAME(145)=SRM1 ;NAME(146)=WDIS NAME(148)=BTAU ;NAME(149)=GEN1 NAME(150) =VISL * Solved variables list SOLVE(P1,V1,W1) * Stored variables list STORE(VISL,GEN1,BTAU,WDIS,SRM1,PA,WA,STRS) STORE(ETA) * Additional solver options SOLUTN(P1,Y,Y,Y,N,N,Y) SOLUTN(V1,Y,Y,Y,N,N,Y) SOLUTN(W1,Y,Y,Y,N,N,Y) ************************************************************ Echo save-block settings for Group 7 save7begin STORE(SRM1) ! = (GEN1)^0.5 (stored of ETA is RHO1*VISL) ! dynamic viscosity save7end ************************************************************ Group 8. Terms & Devices NEWENL = T ************************************************************ Group 9. Properties RHO1 =1065. ENUL = GRND4 ENULA =0.055 ;ENULB =3.5E-03 ;ENULC =0. CP1 =1. DISWAL ENUT =1.0E-10 ************************************************************ Echo save-block settings for Group 9 save9begin REAL(RIN,DIN,WIN,AIN,DPDZ,QIN,ETA0,ETAI,DPDZN) REAL(REY,PI,TAUW,TAUWN,ENULD,TC,GDWN) REAL(GW,GDW,ALFA,BETA,PHI1,ASINHX,XX,AAA,AP,BP,OMEG,OMEG2,OMEG3,PHI2) REAL(FX,FXP,GDWP,TW,GW2,GW3,GW4,TW3,PHI3,BETA3,GMW1,GMW2) REAL(T1,T2,T3,T4,T5,T6,T7,DIN3,QQ,BETA2,ZETA) PI=3.14159265 WIN=0.1;RIN=0.01;DIN=2.*RIN;DIN3=DIN*DIN*DIN AIN=PI*RIN*RIN;QIN=WIN*AIN WIN;DIN;QIN ETAI=0.0035 ! Pa.s ENULB=ETAI REY=RHO1*WIN*DIN/ETAI REY ENUL=GRND4;IENULA=5 ! Powell-Eyring model ETA0=0.055 ! Pa.s TC=5.5 ! s ETA0=ENULAG; ETAI=ENULBG; TC=ENULDG ETA=(ETAI+(ETA0-ETAI)*ASINH(TC*GMDT)/(TC*GMDT)) TAU=ETA*GMDT ENULB=ETAI ! infinite-shear-rate viscosity ENULA=ETA0 ! zero-shear-rate viscosity ENULD=TC ! time constant ETA0;ETAI;TC ** Estimate DPDZ, TAUW & GDW from Newtonian pressure drop DPDZN=8.*ETAI*WIN/(RIN*RIN) ; TAUWN=DPDZN*RIN/2. ; GDWN=TAUWN/ETAI DPDZN; TAUWN; GDWN ** Govier-Aziz analytical parameters AP=1./TC ; BP=TC/(ETA0-ETAI) ; OMEG=AP*BP*ETAI AP;BP;OMEG OMEG2=OMEG*OMEG;OMEG3=OMEG2*OMEG QQ=8.*QIN/(PI*DIN3*AP) QQ ** Iterate to find GDW for PE fluid using TAUWN GDWP=100. GDW =GDWN DO II=1,10 IF(ABS(GDWP).GT.1.E-4) THEN XX=GDW*TC;AAA=XX+SQRT(XX*XX+1.) ASINHX=LOG(AAA) FX=ETAI*GDW+ASINHX/BP-TAUWN FXP=ETAI+(TC/BP)/(1.+XX*XX)**0.5 GDWP=-FX/FXP GDW=GDW+GDWP II;GDWP ENDIF ENDDO GDW ** Two initial values are needed for the Secant Method GMW1=GDW/AP GMW2=1.25*GMW1 GMW1 GMW2 ** Iterate to find GW from Secant Method REAL(AA,DL,BB,DX,X0,X1,X2,FX1,FX0,DD,ABSDX) DL = 1.0E-03 AA = GMW1; BB = GMW2 DX = (BB-AA)/10. X0 = (AA+BB)/2.0 X1 = X0 + DX DO II=1,10 IF(ABS(DX).GT.DL) THEN GW=X0 GW2=GW*GW;GW3=GW2*GW;GW4=GW2*GW2 ALFA=(1.+GW2);BETA=SQRT(ALFA) alfa beta BETA2=BETA*BETA;BETA3=BETA2*BETA ZETA=(2.*GW2+1.) XX=GW;AAA=XX+SQRT(XX*XX+1.) ASINHX=LOG(AAA) PHI1=ASINHX;PHI2=PHI1*PHI1;PHI3=PHI2*PHI1 TW=OMEG*GW+ASINHX;TW3=TW**3;T7=1./(3.*TW3) T1=GW/3. T2=0.25*OMEG3*GW4 T3=GW3*PHI1-GW2*BETA+2.*BETA3/3.-2./3. T4=ZETA*PHI2 - 2.*GW*BETA*PHI1+GW2 T5=GW*PHI3-3.*BETA*PHI2 T6=GW*PHI1-BETA+1. FX0=T1-T7*(T2+OMEG2*T3+0.75*OMEG*T4+T5+6.*T6)-QQ FX0 GW=X1 GW2=GW*GW;GW3=GW2*GW;GW4=GW2*GW2 ALFA=(1.+GW2);BETA=SQRT(ALFA) BETA2=BETA*BETA;BETA3=BETA2*BETA ZETA=(2.*GW2+1.) XX=GW;AAA=XX+SQRT(XX*XX+1.) ASINHX=LOG(AAA) PHI1=ASINHX;PHI2=PHI1*PHI1;PHI3=PHI2*PHI1 TW=OMEG*GW+ASINHX;TW3=TW**3;T7=1./(3.*TW3) T1=GW/3. T2=0.25*OMEG3*GW4 T3=GW3*PHI1-GW2*BETA+2.*BETA3/3.-2./3. T4=ZETA*PHI2 - 2.*GW*BETA*PHI1+GW2 T5=GW*PHI3-3.*BETA*PHI2 T6=GW*PHI1-BETA+1. FX1=T1-T7*(T2+OMEG2*T3+0.75*OMEG*T4+T5+6.*T6)-QQ FX1 DD = FX1 - FX0 X2 = X1 - FX1*(X1-X0)/DD X0 = X1 X1 = X2 DX = X1 - X0 II;X0;DX ENDIF ENDDO GW=X0 ** Now compute shear stress & DPDZ for PE fluid XX=GW;AAA=XX+SQRT(XX*XX+1.) ASINHX=LOG(AAA) TW=OMEG*GW+ASINHX TAUW=TW/BP TAUW DPDZ=2.*TAUW/RIN DPDZ ** Newtonian analytical pressure solution (make1 zgnz is 0) (store1 zgnz is zg with IF(IZ.EQ.NZ)) (print zgnz is zgnz) (stored of PA is -DPDZ*(ZG-ZGNZ)) ** Newtonian analytical axial-velocity profile (stored of WA is 2.*WIN*(1.-(YG/RIN)^2)) save9end ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initialise Var/Porosity Fields FIINIT(W1)=0.1 ;FIINIT(WDIS)=0.1 FIINIT(GEN1)=1.001E-10 ;FIINIT(VISL)=1.001E-10 No PATCHes used for this Group INIADD = F ************************************************************ Group 12. Convection and diffusion adjustments No PATCHes used for this Group ************************************************************ Group 13. Boundary & Special Sources No PATCHes used for this Group EGWF = T ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 1000 RESREF(P1)=5.0E-16 ;RESREF(V1)=5.0E-16 RESREF(W1)=5.0E-16 RESFAC =5.0E-06 ************************************************************ Group 16. Terminate Iterations ************************************************************ Group 17. Relaxation RELAX(P1 ,LINRLX,1. ) RELAX(V1 ,FALSDT,0.05 ) RELAX(W1 ,FALSDT,0.05 ) ************************************************************ Group 18. Limits ************************************************************ Group 19. EARTH Calls To GROUND Station GENK = T PARSOL = F ISG62 = 1 SPEDAT(SET,OUTPUT,NOFIELD,L,T) SPEDAT(SET,GXMONI,PLOTALL,L,T) ************************************************************ Group 20. Preliminary Printout DISTIL = T ;NULLPR = F NDST = 0 DSTTOL =1.0E-02 EX(P1)=11.16 ;EX(V1)=3.542E-04 EX(W1)=0.1137 ;EX(ETA)=0.01119 EX(STRS)=1.165E-05 ;EX(WA)=0.1198 EX(PA)=10.41 ;EX(SRM1)=19.66 EX(WDIS)=3.453E-03 ;EX(LTLS)=1.499E-05 EX(BTAU)=0.1129 ;EX(GEN1)=665.099976 EX(VISL)=1.051E-05 ************************************************************ Group 21. Print-out of Variables OUTPUT(ETA ,Y,N,Y,N,Y,Y) OUTPUT(BTAU,Y,N,Y,N,Y,Y) OUTPUT(VISL,Y,N,Y,N,Y,Y) ************************************************************ Group 22. Monitor Print-Out IXMON = 1 ;IYMON = 7 ;IZMON = 36 NPRMON = 100000 NPRMNT = 1 TSTSWP = -1 ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 NYPRIN = 1 NZPRIN = 1 YZPR = T ISWPRF = 1 ;ISWPRL = 100000 No PATCHes used for this Group ************************************************************ Group 24. Dumps For Restarts ************************************************************ Echo save-block settings for Group 24 save24begin DISTIL=T EX(P1 )=1.116E+01;EX(V1 )=3.542E-04 EX(W1 )=1.137E-01;EX(ETA )=1.119E-02 EX(STRS)=1.165E-05;EX(WA )=1.198E-01 EX(PA )=1.041E+01;EX(LTLS)=1.499E-05 EX(WDIS)=3.453E-03;EX(SRM1)=1.966E+01 EX(BTAU)=1.129E-01;EX(VISL)=1.051E-05 EX(GEN1)=6.651E+02 save24end GVIEW(P,-1.,0.,0.) GVIEW(UP,0.,1.,0.) GVIEW(VDIS,0.247398) GVIEW(CENTRE,4.991671E-04,5.0E-03,0.25) > DOM, SIZE, 1.000000E-01, 1.000000E-02, 5.000000E-01 > DOM, MONIT, 5.000000E-02, 4.136836E-03, 4.581974E-01 > DOM, SCALE, 1.000000E+00, 2.000000E+00, 1.000000E+00 > DOM, INCREMENT, 1.000000E-02, 1.000000E-02, 1.000000E-02 > GRID, RSET_X_1, 1, 1.000000E+00 > GRID, RSET_Y_1, 20,-1.040000E+00,G > GRID, RSET_Z_1, -40, 1.200000E+00 > DOM, T_AMBIENT, 0.000000E+00 > OBJ, NAME, INLET > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 1.000000E-01, TO_END, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, poldef > OBJ, TYPE, INLET > OBJ, PRESSURE, P_AMBIENT > OBJ, VELOCITY, 0. ,0. ,0.1 > OBJ, NAME, OUTL > OBJ, POSITION, 0.000000E+00, 0.000000E+00, AT_END > OBJ, SIZE, 1.000000E-01, TO_END, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, poldef > OBJ, TYPE, OUTLET > OBJ, PRESSURE, 0. > OBJ, COEFFICIENT, 1000. > OBJ, NAME, WALL > OBJ, POSITION, 0.000000E+00, AT_END, 0.000000E+00 > OBJ, SIZE, 1.000000E-01, 0.000000E+00, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, poldef > OBJ, TYPE, PLATE STOP