PHOTON USE p;;;;; up z msg velocity vectors * set vec ref;0.5 vec x 1 sh; gr ou x 1 msg Pressto continue pause; cl msg contour of pressure con p1 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of SLTM, deduced from MFM con SLTM x 1 fi;0.002; gr ou x 1 pause; cl msg contour of SLTS, dedued from single-fluid model con SLTS x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of c1 con c1 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of enut con enut x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of ep/ke con RATE x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of ke con ke x 1 fi;0.002; gr ou x 1 pause; cl msg contour of mnsq con mnsq x 1 fi;0.002; gr ou x 1 pause; cl msg contour of avef con avef x 1 fi;0.002; gr ou x 1 pause; cl msg contour of fluid 1 volume fraction con f1 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 2 volume fraction con f2 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 3 volume fraction con f3 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 4 volume fraction con f4 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 5 volume fraction con f5 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 6 volume fraction con f6 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 7 volume fraction con f7 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 8 volume fraction con f8 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 9 volume fraction con f9 x 1 fi;0.002; gr ou x 1 msg Press to continue pause; cl msg contour of fluid 10 volume fraction con f10 x 1 fi;0.002; gr ou x 1 pause; cl msg contour of fluid 11 volume fraction con f11 x 1 fi;0.002; gr ou x 1 msg Press to continue enduse GROUP 1. Run title #cls TEXT(MFM; Stirred Tank; salt creation TITLE DISPLAY The geometry of this case is similar to that of case W918; but, unlike that case, ONEPHS=T. There are therefore only 3 velocity components. On the other hand, 11 fluids are distinguished, formed by mixing an acidic fluid with an alkaline one in different proportions. l(pause __________|.|________ The sketch illustrates the apparatus and | ||| | the initial state of the two liquids. | upper |.| | | liquid ||| | They are both at rest, and are in contact | |.| acid | at a horizontal interface |..........|||........| | lower |.| alkali | The paddle is supposed to be suddenly set | liquid ||| | in motion. | --------- | |paddle ////\\\\\ | The computational task is to predict both | . | the macro-mixing, represented by the ------------|--------- subsequent distributions of velocity, .< axis of pressure and time-average concentration, symmetry but also the extent to which the two The stirred mixing tank liquids are mixed together at any point. ENDDIS l(pause) REAL(UDRPAD,HEIGHT,DIAM,CHATIM) UDRPAD=10.0; HEIGHT=1.0; DIAM=1.0 udrpad=udrpad/2 CHATIM=0.01*HEIGHT/UDRPAD GROUP 2. Transience; time-step specification The process is simulated for a 10-second period, divided into 10 equal intervals STEADY=F;GRDPWR(T,10,10.0,1.0) lstep=10; tlast=10.0 nx=1; xulast=0.1; ny=10; yvlast= DIAM*0.5; nz=10; zwlast=height cartes=F #unigrid #solvel SOLVE(C1) solutn(u1,y,y,n,p,p,p) solutn(v1,p,p,n,p,p,p); solutn(w1,p,p,n,p,p,p) STORE(enut,len1,rate) NAME(W2)=E2 turmod(kemodl) kelin=3 GROUP 9. Properties of the medium (or media) ENUL=1.E-2 RHO1=1.E3 GROUP 11. Initialization of variable or porosity fields FIINIT(C1)=0.0 patch START occupies the lower half of the tank INIADD=F PATCH(START,INIVAL,1,1,1,NY,1,NZ/2,1,LSTEP) COVAL(START,C1,0.0,1.0) FIINIT(RATE)=0.01*UDRPAD; FIINIT(KE)=0.01*(UDRPAD*DIAM)**2 FIINIT(EP)=FIINIT(RATE)*FIINIT(KE) FIINIT(ENUT)=FIINIT(RATE)*DIAM;FIINIT(LEN1)=0.2 GROUP 13. Boundary conditions and special sources Cylindrical-wall friction WALL (CYLWALL,NORTH,1,1,NY,NY,1,NZ,1,LSTEP) COVAL(CYLWALL,W1,LOGLAW,0.0); COVAL(CYLWALL,E2,LOGLAW,0.0) COVAL(CYLWALL,U1,LOGLAW,0.0); COVAL(CYLWALL,U2,LOGLAW,0.0) COVAL(CYLWALL,KE,LOGLAW,LOGLAW); COVAL(CYLWALL,EP,LOGLAW,LOGLAW) Top-wall friction WALL (TOP,HIGH,1,1,1,NY,NZ,NZ,1,LSTEP) COVAL(TOP,U1,LOGLAW,0.0); COVAL(TOP,U2,LOGLAW,0.0) COVAL(TOP,V1,LOGLAW,0.0); COVAL(TOP,V2,LOGLAW,0.0) COVAL(TOP,KE,LOGLAW,LOGLAW); COVAL(TOP,EP,LOGLAW,LOGLAW) Bottom-wall friction WALL (BOTTOM,LOW,1,1,1,NY,1,1,1,LSTEP) COVAL(BOTTOM,U1,LOGLAW,0.0); COVAL(BOTTOM,U2,LOGLAW,0.0) COVAL(BOTTOM,V1,LOGLAW,0.0); COVAL(BOTTOM,V2,LOGLAW,0.0) COVAL(CYLWALL,KE,LOGLAW,LOGLAW); COVAL(CYLWALL,EP,LOGLAW,LOGLAW) Pressure-relief condition to ensure that problem is well-posed PATCH(PRELIEF,HIGH,1,1,NY,NY,NZ,NZ,1,100) COVAL(PRELIEF,P1,FIXP,0.0); COVAL(PRELIEF,C1,ONLYMS,0.0) Paddle condition, a fixed value for the liquid u/r PATCH(PADDLE,CELL,1,1,NY/2,NY/2,NZ/5,NZ/5,1,LSTEP) IURVAL=-1; COVAL(PADDLE,U1,FIXVAL,UDRPAD) GROUP 15. Termination of sweeps The following conditions are not necessarily optimal LSWEEP=100; SELREF=T; RESFAC=0.1 GROUP 17. Under-relaxation devices RELAX(W1,FALSDT,CHATIM); RELAX(V1,FALSDT,CHATIM) RELAX(U1,LINRLX,0.1) RELAX(KE,LINRLX,0.5); RELAX(EP,LINRLX,0.5) RELAX(ENUT,LINRLX,0.1) VARMIN(KE)=0.0001; VARMAX(RATE)=10000. GROUP 22. Spot-value print-out TSTSWP=-1; NPRMON=20; IYMON=NY/2; IZMON=NZ/2 GROUP 23. Field print-out and plot control IURPRN=-1; NYPRIN=NY/5; NXPRIN=NZ/5 Line-printer contour plots for various quantities are called for PATCH(MAP,CONTUR,1,1,1,NY,1,NZ,1,LSTEP) PLOT(MAP,W1,0.0,10); PLOT(MAP,U1,0.0,10); PLOT(MAP,V1,0.0,10) PLOT(MAP,C1,0.0,10.0) A line-printer profile plot for the topmost-but-one slab is called for PATCH(IZEQNZM1,PROFIL,1,1,1,NY,NZ-1,NZ-1,1,LSTEP) PLOT(IZEQNZM1,W1,0.0,0.0) PATCH(IZEQNZD2,PROFIL,1,1,1,NY,1,NZ/2,1,LSTEP) PLOT(IZEQNZD2,W1,-1.0,-1.0) PATCH(TIMEPLOT,PROFIL,1,1,NY/2,NY/2,NZ/2,NZ/2,1,LSTEP) PLOT(TIMEPLOT,U1,0.0,0.0); PLOT(TIMEPLOT,V1,0.0,0.0) PLOT(TIMEPLOT,W1,0.0,0.0) PLOT(TIMEPLOT,C1,0.0,0.0) SARAH=0.001 ************************* MFM **************************** (stored var mixl is len1) (stored var rate is epke) SOLVE(SLTM); FIINIT(SLTM)=0.0 ! salt concentration from MFM PATCH(SALT1,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP) COVAL(SALT1,SLTM,FIXFLU,GRND) salt concentration from single-fluid model SOLVE(SLTS); FIINIT(SLTM)=0.0 PATCH(SALT2,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP) COVAL(SALT2,SLTS,FIXFLU,GRND) #mfm NFLR=1; NFLF= 11; NFLUIDS=NFLR*NFLF ! data needed by macro varset CONMIX=5; CONREA=0.0 TEXT(MFM; Stirred Tank; Conmix=:Conmix: #mfm1 DO II = 1,NFLUIDS FIINIT(F:II:)=0.0 COVAL(START,F:II:,0.0,0.0) RELAX(F:II:,LINRLX,1.0) COVAL(PRELIEF,F:II:,ONLYMS,same) ENDDO fluid :nfluids: occupies the top half, fluid 1 the lower FIINIT(F:NFLUIDS:)=1.0 COVAL(START,F1,0.0,1.0) CHAR(NAMPROF) DO II=1,NFLUIDS NAMPROF=PROF:II: PATCH(:NAMPROF:,PROFIL,1,1,1,NY,1,NZ,1,1) COVAL(:NAMPROF:,F:II:,0.0,0.0) ENDDO PATCH(MIDDLE,PROFIL,1,1,NY/2,NY/2,1,NZ,1,lstep) COVAL(MIDDLE,AVEF,0.0,0.0) COVAL(MIDDLE,MNSQ,0.0,0.0) COVAL(MIDDLE,ENUT,0.0,0.0) ORSIZ=ORSIZ/2 TSTSWP=-1; UWATCH=T; USTEER=T; NYPRIN=1; resfac=1.e-3 DISTIL=T EX(P1 )= 7.432E+01; EX(V1 )= 9.456E-02; EX(W1 )= 1.466E-01 EX(KE )= 5.478E-02; EX(EP )= 2.388E-01; EX(C1 )= 4.929E-01 EX(F1 )= 8.842E-06; EX(F2 )= 2.041E-05; EX(F3 )= 5.379E-05 EX(F4 )= 3.485E-04; EX(F5 )= 2.076E-01; EX(F6 )= 5.029E-01 EX(F7 )= 2.334E-01; EX(F8 )= 4.990E-02; EX(F9 )= 4.847E-03 EX(F10 )= 7.725E-04; EX(F11 )= 1.593E-04; EX(MNSQ)= 6.252E-02 EX(AVEF)= 5.143E-01; EX(SLTS)= 2.255E-06; EX(SLTM)= 1.989E-06 EX(RATE)= 2.002E+00; EX(MIXL)= 1.619E-02; EX(EPKE)= 2.002E+00 EX(LEN1)= 1.619E-02; EX(ENUT)= 1.641E-03 STOP