** MB-FGE Test: Swirling flow through expanding pipe. ************************************************************** DISPLAY This case concerns axisymmetric incompressible laminar/ turbulent flow in the expanding pipe. The flow rotates, with linear swirling velocity profile at the inlet. The flow exhibits recirculation not only behind the step at the pipe wall, but in the region on the pipe axis. Calculations of the turbulent flow (LTURB=T) could be made with low-Re extensions of whether standard K-E model (LOWKE=T) or Chen-Kim K-E model (LCHEK=T). Computational domain is built from 2 blocks with grid sizes NX1,NY1,NZ1 and NX2,NY2,NZ2 respectively. The grid for the after step region can be IFCZ times finer in the Z-direction as the grid at the top. --------------------------------------------------------- ENDDIS L(PAUSE ************************************************************** INTEGER(IFCZ); IFCZ= 2 BOOLEAN(LTURB,LOWKE,LCHEK); LTURB= F; LOWKE= F; LCHEK= F ************************************************************** PHOTON USE p ; ; ; ; ; set vec av off msg Velocity vectors: vec i 1 sh msg Press any key to continue ... pause cl msg Pressure contours: con p1 i 1 fi;0.01 pause msg Press any key to continue ... cl msg Swirl velocity contours: con uc1 i 1 fi;0.01 pause msg Press any key to continue ... cl msg W-component contours: con w1 i 1 fi;0.01 msg Press any key to continue ... pause cl msg V-component contours: con v1 i 1 fi;0.01 ENDUSE ************************************************************** GROUP 1. Run title and other preliminaries IF(LTURB) THEN + IF(LOWRE) THEN + TEXT(MB-FGE: Swirl-flow (K-E low-Re). + ELSE + TEXT(MB-FGE: Swirl-flow (Chen-Kim K-E low-Re). + ENDIF ELSE + TEXT(MB-FGE: Swirl-flow (Re=100). ENDIF TITLE INTEGER(NX1,NY1,NZ1,NZST,NX2,NY2,NZ2) REAL(REYNO,WIN,UIN,HSTEP,LSTPP,HCHAN,LCHAN,DXX,DTHYD,UCUR) REAL(TKEIN,EPSIN) ** Problem definition: IF(LTURB) THEN + REYNO= 1.0E5 ELSE + REYNO= 100.0 ENDIF HSTEP= 1.0; LSTPP= 2.0; HCHAN= 2.0; LCHAN= 20.0 WIN = 1.0; DXX = 0.1; UIN = 3.0; ENUL = WIN*HSTEP/REYNO ** First sub-domain. NX1 = 1; NY1 = 12; NZ1 = 26; NZST = 6; ** Second sub-domain. NX2 = 1; NY2 = 12; NZ2 = (NZ1-NZST)*IFCZ GROUP 6. Body-fitted coordinates or grid distortion BFC = T ** Define grid points and lines for the first sub-domain: GSET(P,P1,0.0, 0.0, 0.0);GSET(P,P2,0.0, 0.0,LSTPP) GSET(P,P3,0.0, 0.0,LCHAN);GSET(P,P4,0.0,HCHAN-HSTEP,LCHAN) GSET(P,P5,0.0,HCHAN-HSTEP,LSTPP);GSET(P,P6,0.0,HCHAN-HSTEP, 0.0) GSET(L,L12,P1,P2,NZST,-1.3); GSET(L,L23,P2,P3,NZ1-NZST,1.0) GSET(L,L34,P3,P4, NY1, 1.0); GSET(L,L45,P4,P5,NZ1-NZST,1.0) GSET(L,L56,P5,P6,NZST, 1.3); GSET(L,L61,P6,P1, NY1,1.0) ** Define grid points and lines for the second sub-domain: GSET(P,P7,0.0,HCHAN-HSTEP,LSTPP);GSET(P,P8, 0.0,HCHAN-HSTEP,LCHAN) GSET(P,P9,0.0, HCHAN,LCHAN);GSET(P,P10,0.0, HCHAN,LSTPP) GSET(L,L78, P7,P8, NZ2, 1.0); GSET(L,L89, P8, P9,NY2, 1.0) GSET(L,L910,P9,P10,NZ2, 1.0); GSET(L,L107,P10,P7,NY2, 1.0) ** Create grid for the first sub-domain. GSET(D,NX1,NY1,NZ1,DXX,HCHAN-HSTEP,LCHAN) GSET(F,F1,P1,P2,P3,-,P4,P5,P6,-); GSET(M,F1,+K+J,1,1,1) GSET(C,I:NX1+1:,F,I1,1,NY1,1,NZ1,RZ,-DXX,0.0,0.0,INC,1.0) DUMPC(MBGR1) ** Create grid for the second sub-domain. GSET(D,NX2,NY2,NZ2,DXX,HSTEP,LCHAN-LSTPP) GSET(F,F2,P7,-,P8,-,P9,-,P10,-); GSET(M,F2,+K+J,1,1,1) GSET(C,I:NX2+1:,F,I1,1,NY2,1,NZ2,RZ,-DXX,0.0,0.0,INC,1.0) DUMPC(MBGR2) ** Assemble blocks: NUMBLK = 2; READCO(MBGR+L) GVIEW(X); VIEW ** Set links: ** You can use MBLINK command instead of READCO(...+L). MBLINK(1,NORTH,2,SOUTH) GROUP 7. Variables stored, solved & named STORE(VPOR); NAME(C3)= UC1; SOLVE(P1,V1,W1,UC1) IF(LTURB) THEN + IF(LCHEK) THEN + TURMOD(KECHEN-LOWRE) + ELSE + TURMOD(KEMODL-LOWRE) + ENDIF + STORE(ENUT,LEN1) ENDIF L($F150) GROUP 11. Initialization of variable or porosity fields INIADD= F; FIINIT(UC1)= 1.E-3 IF(LTURB) THEN + TKEIN= (0.05*WIN)**2; EPSIN = TKEIN**1.5*0.1643/0.09*HSTEP + FIINIT(P1)= 1.3E-4; FIINIT(KE)= TKEIN; FIINIT(EP)= EPSIN ENDIF GROUP 13. Boundary conditions and special sources ** Inlet. DO II = 1,NY1 + UCUR = (2*II-1)*UIN/NY1/2 + MPATCH(1,INL:II:,LOW,1,NX1,II,II,1,1,1,LSTEP) + COVAL(INL:II:,P1,FIXFLU,WIN*RHO1);COVAL(INL:II:,UC1,ONLYMS,UCUR) + COVAL(INL:II:,WC1,ONLYMS,WIN);COVAL(INL:II:,VC1,ONLYMS,0.0) + IF(LTURB) THEN + COVAL(INL:II:,KE,ONLYMS,TKEIN);COVAL(INL:II:,EP,ONLYMS,EPSIN) + ENDIF ENDDO ** Outlet. MPATCH(1,OUT1,HIGH,1,NX1,1,NY1,NZ1,NZ1,1,LSTEP) COVAL(OUT1,P1,1.E5,0.0) MPATCH(2,OUT2,HIGH,1,NX2,1,NY2,NZ2,NZ2,1,LSTEP) COVAL(OUT2,P1,1.E5,0.0) ** Walls. MPATCH(1,WN1,NWALL,1,NX1,NY1,NY1,1,NZST,1,LSTEP) MPATCH(2,WN2,NWALL,1,NX2,NY2,NY2,1, NZ2,1,LSTEP) MPATCH(2,WL, LWALL,1,NX2, 1,NY2,1, 1,1,LSTEP) IF(LTURB) THEN + COVAL(WN1, KE,1.0,0.0); COVAL(WN2, KE,1.0,0.0) + COVAL(WN1,LTLS,1.0,0.0); COVAL(WN2,LTLS,1.0,0.0) + COVAL( WL, KE,1.0,0.0); COVAL( WL,LTLS,1.0,0.0) + COVAL(WN1,WC1,LOGLAW,0.0); COVAL(WN1,VC1,LOGLAW,0.0) + COVAL(WN1,UC1,LOGLAW,0.0) + COVAL(WN2,WC1,LOGLAW,0.0); COVAL(WN2,VC1,LOGLAW,0.0) + COVAL(WN2,UC1,LOGLAW,0.0) + COVAL(WL, WC1,LOGLAW,0.0); COVAL(WL, VC1,LOGLAW,0.0) + COVAL(WL, UC1,LOGLAW,0.0) ELSE + COVAL(WN1,WC1,1.0,0.0); COVAL(WN1,VC1,1.0,0.0) + COVAL(WN1,UC1,1.0,0.0) + COVAL(WN2,WC1,1.0,0.0); COVAL(WN2,VC1,1.0,0.0) + COVAL(WN2,UC1,1.0,0.0) + COVAL(WL, WC1,1.0,0.0); COVAL(WL, VC1,1.0,0.0) + COVAL(WL, UC1,1.0,0.0) ENDIF GROUP 15. Termination of sweeps LSWEEP = 200; TSTSWP = -1 GROUP 16. Termination of iterations SELREF = T; RESFAC = 1.E-3 GROUP 17. Under-relaxation devices DTHYD = HCHAN/(NY1*WIN) RELAX(P1, LINRLX, 1.0); RELAX(UC1,FALSDT,DTHYD) RELAX(VC1,FALSDT,DTHYD); RELAX(WC1,FALSDT,DTHYD) IF(LTURB) THEN + KELIN= 1; RELAX(KE,FALSDT,DTHYD); RELAX(EP,FALSDT,DTHYD) ENDIF GROUP 19. Data communicated by satellite to GROUND * LSG6= T activates special treatment of swirling velocity component (UC1) for NX=1 cases. LSG6= T GROUP 22. Spot-value print-out IXMON = NZ/2+1; IYMON = NY/2+1; IXMON=1