CCM Test: Laminar/Turbulent swirling flow in a pipe with
               linear expansion.
  **************************************************************
  DISPLAY
  ----------------------------------------------------------
   This  case  concerns  axisymmetric incompressible laminar
   (or  turbulent  LTURB=  T)  flow  in the pipe with linear
   expansion.   The  flow  exhibits  recirculation  in   the
   region on  the pipe  axis. That  kind of  flows is common
   for gas burners.
 
   The problem is  set in Y-Z  plane; the swirling  velocity
   component UC1 is solved as scalar using special treatment
   (LSG6= T). User can model the same problem as 3D  (NX>1),
   however the speed of convergence, provided the problem is
   truly axisymmetric, is rather slow.
 
   User can switch from the default colocated  computational
   algorithm (CCM)  to the  staggered one  (STAG) by setting
   LCCM= F.
  ----------------------------------------------------------
  ENDDIS
L(PAUSE
  **************************************************************
BOOLEAN(LCCM,LUNIF,LTURB); LCCM= T; LTURB= F; LUNIF= LTURB
  **************************************************************
  PHOTON USE
   p ; ; ; ; ;
 
   msg Computational Domain:
   gr i 1
   msg Press Any Key to Continue...
   pause
   cl
   set vec av off
   msg Velocity Vectors:
   vec i 1 sh
   msg Press Any Key to Continue...
   pause
   cl
   msg Contours of Pressure:
   con p1 i 1 fi;0.005
   msg Press E  to exit PHOTON ...
  ENDUSE
  **************************************************************
INTEGER(NZ1,NZ2,NZ3)
REAL(REYNO,WIN,HCH1,LST1,LST2,HCH2,LCHAN,WCR,DTHYD,DXX,UIN,UCR)
REAL(KEIN,EPIN)
    GROUP 1. Run title and other preliminaries
  ** Problem definition:
IF(LTURB) THEN
+ WIN= 1.0;  UIN= 1.0*WIN;  LCHAN= 10.; NZ3= 24
+IF(LCCM) THEN
+ TEXT(CCM : Swirling flow; Lin-expan. (K-E).
+ELSE
+ TEXT(STAG: Swirling flow; Lin-expan. (K-E).
+ NONORT = T
+ENDIF
ELSE
+ WIN= 1.0;  UIN= 1.5*WIN;  LCHAN= 5.0; NZ3= 12
+IF(LCCM) THEN
+ TEXT(CCM : Swirling flow; Lin-expan. (Re=200).
+ELSE
+ TEXT(STAG: Swirling flow; Lin-expan. (Re=200).
+ NONORT = T
+ENDIF
ENDIF
HCH2= 0.5;  HCH1= 0.2;  LST1= 0.2;  LST2= 0.8;  DXX = 0.025
NZ1 = 4;    NZ2 = 10;   NZ  = NZ1+NZ2+NZ3
NY  = 12;   NX  = 1
    GROUP 6. Body-fitted coordinates or grid distortion
BFC = T; GSET(D,NX,NY,NZ,HCH2/NY,HCH2,LCHAN)
GSET(P,P1,0.0,0.0 ,0.0      );  GSET(P,P2,0.0,0.0 ,LST1     )
GSET(P,P3,0.0,0.0 ,LST1+LST2);  GSET(P,P4,0.0,0.0 ,LCHAN    )
GSET(P,P5,0.0,HCH2,LCHAN    );  GSET(P,P6,0.0,HCH2,LST1+LST2)
GSET(P,P7,0.0,HCH1,LST1     );  GSET(P,P8,0.0,HCH1,0.0      )
GSET(L,L12,P1,P2,NZ1, 1.0);  GSET(L,L23,P2,P3,NZ2, 1.3)
GSET(L,L34,P3,P4,NZ3, 1.4);  GSET(L,L45,P4,P5,NY,  1.0)
GSET(L,L56,P5,P6,NZ3,-1.4);  GSET(L,L67,P6,P7,NZ2,-1.3)
GSET(L,L78,P7,P8,NZ1, 1.0);  GSET(L,L81,P8,P1,NY,  1.0)
GSET(F,F1,P1,P2.P3,P4,-,P5,P6.P7,P8,-); GSET(M,F1,+K+J,1,1,1)
GSET(C,I:NX+1:,F,I1,RZ,-DXX*NX,0.0,0.0,INC,1.0)
GVIEW(X); VIEW
    GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1); SOLUTN(P1,Y,Y,Y,N,N,N)
IF(LCCM) THEN
+ NAME(C1)= UC1;  NAME(C2)= VC1;  NAME(C3)= WC1
+ SOLVE(UC1,VC1,WC1);      SOLUTN(UC1,Y,Y,Y,P,P,P)
+ SOLUTN(VC1,Y,Y,Y,P,P,P); SOLUTN(WC1,Y,Y,Y,P,P,P)
+  TERMS(WC1,N,Y,Y,P,P,P);  TERMS(VC1,N,Y,Y,P,P,P)
+  TERMS(W1, N,N,N,N,P,N);  TERMS(V1, N,N,N,N,P,N)
+IF(NX.GT.1) THEN
+ XCYCLE= T;  SOLVE(U1)
+ TERMS(UC1,N,Y,Y,P,P,P); TERMS(U1,N,N,N,N,P,N)
+ENDIF
ELSE
+ SOLVE(U1)
ENDIF
IF(LTURB) THEN
+ TURMOD(KEMODL)
+ SOLUTN(KE,Y,Y,Y,P,P,P); SOLUTN(EP,Y,Y,Y,P,P,P)
+ KEIN= (0.05*WIN)**2;  EPIN= 0.1643*KEIN**1.5/(0.09*HCH1)
+ ENUL= 1.544E-5;  FIINIT(KE)= KEIN;  FIINIT(EP)= EPIN
ELSE
+ REYNO= 200.0;  ENUL= WIN*HCH1/REYNO
ENDIF
    GROUP 9. Properties of the medium (or media)
RHO1= 1.189
    GROUP 11. Initialization of variable or porosity fields
INIADD= F
    GROUP 13. Boundary conditions and special sources
    ** Inlet.
DO II = 1,NY
+IF(LUNIF) THEN
+ WCR = WIN
+ELSE
+ WCR = WIN*(1.0-((2*II-1)/NY/2)**2)
+ENDIF
+ UCR = UIN*(2*II-1)/NY/2
+ INLET(INL:II:,LOW,1,NX,II,II,1,1,1,LSTEP)
+  VALUE(INL:II:,P1,WCR*RHO1)
+IF(LCCM) THEN
+  VALUE(INL:II:,UC1,UCR); VALUE(INL:II:,VC1,0.0)
+  VALUE(INL:II:,WC1,WCR)
+ELSE
+  VALUE(INL:II:,U1, UCR); VALUE(INL:II:,V1, 0.0)
+  VALUE(INL:II:,W1, WCR)
+ENDIF
+IF(LTURB) THEN
+  VALUE(INL:II:,KE,KEIN); VALUE(INL:II:,EP,EPIN)
+ENDIF
ENDDO
    ** Walls.
PATCH(WN,NWALL,1,NX,NY,NY,1,NZ,1,LSTEP)
    ** Outlet.
PATCH(OUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP); COVAL(OUT,P1,1.E5,0.0)
IF(LTURB) THEN
+ COVAL( WN,KE, LOGLAW,LOGLAW); COVAL( WN,EP, LOGLAW,LOGLAW)
+ COVAL(OUT,KE,ONLYMS, SAME); COVAL(OUT,EP,ONLYMS, SAME)
+IF(LCCM) THEN
+ COVAL(WN,UC1,LOGLAW,0.0); COVAL(WN,VC1,LOGLAW,0.0)
+ COVAL(WN,WC1,LOGLAW,0.0)
+ELSE
+ COVAL(WN,U1,LOGLAW,0.0); COVAL(WN,W1,LOGLAW,0.0)
+ENDIF
ELSE
+IF(LCCM) THEN
+ COVAL(WN,UC1,1.0,0.0); COVAL(WN,VC1,1.0,0.0)
+ COVAL(WN,WC1,1.0,0.0)
+ELSE
+ COVAL(WN,U1, 1.0,0.0); COVAL(WN,W1, 1.0,0.0)
+ENDIF
ENDIF
    GROUP 15. Termination of sweeps
LSWEEP = 500;  TSTSWP = -1;  SELREF= T;  RESFAC= 1.E-3
    GROUP 17. Under-relaxation devices
RELAX(P1,LINRLX,0.5);  DTHYD = LCHAN/NZ/WIN
IF(LCCM) THEN
+ RELAX(UC1,FALSDT,DTHYD); RELAX(VC1,FALSDT,DTHYD)
+ RELAX(WC1,FALSDT,DTHYD); VARMIN(UC1)= 0.0
ELSE
+ RELAX(U1,FALSDT,DTHYD); RELAX(V1,FALSDT,DTHYD)
+ RELAX(W1,FALSDT,DTHYD); VARMIN(U1)= 0.0
ENDIF
IF(LTURB) THEN
+ LSWEEP= 1000; KELIN= 1; YPLS= T
+ RELAX(KE,FALSDT,DTHYD); RELAX(EP,FALSDT,DTHYD)
ENDIF
    GROUP 19. Data communicated by satellite to GROUND
IF(LCCM) THEN
    * LSG4= T activates nonorthogonality treatment in CCM
    * LSG6= T activates special treatment of swirling
              velocity component (UC1) for NX=1 cases.
+ CSG3= LCRU;  LSG4= T;  LSG6= T
ENDIF
    GROUP 22. Spot-value print-out
IXMON= 1; IYMON= NY/2+1; IZMON= NZ/2+1