TEXT(2-PHASE TURBULENT AIR-SOLIDS PIPE FLOW TITLE DISPLAY The case considered is 2-phase solids-laden turbulent vertical flow of air in a pipe, as studied experimentally by Tsuji et al [J.Fluid Mech, Vol.139, p417, 1984]. The calculation is performed with the parabolic option. For comparison with data the calculation should be carried out until the flow is fully developed, i.e. 70 diameters downstream. The calculation may be made with the standard k-e model, or alternatively with the Chen-Wood or Mostafa-Mongia k-e variants which allow for gas turbulence modulation due to the presence of particles. The pipe Reynolds number is 3E4, the density ratio is 866, the particle mass-flow loading may be 1.0 or 2.1, and the particle diameter is 200 microns. The task is to calculate the fully-developed vertical velocity profiles for comparison with the measured profiles. For the results of a study made with a 1995 version of PHOENICS, click here. ENDDIS PHOTON USE p parphi 20 1 msg flow is from right to left; wall is at top, axis at bottom msg radial dimension enlarged 20-fold msg axial velocity contours for phase 1 con w1 x 1 fi ;.001 pause;con off; red msg axial velocity contours for phase 2 con w2 x 1 fi;0.001 pause;con off;red msg volume-fraction contours for phase 2 con r2 x 1 fi;0.001 pause;con off;red msg interphase-friction factors con cfip x 1 fi;0.001 pause; con off; red msg effective (i.e. turbulent) viscosity con enut x 1 fi;0.001 pause; con off; red msg axial velocity contours for phase 1 vec x 1 sh enduse CHAR(CTURB);INTEGER(JRUN,NSTEP) MESG( Enter the required turbulence-modulation option; MESG( default NONE MESG( The options are: MESG( MOST - Mostafa-Mongia k-e modulation sources MESG( CHEN - Chen-Wood k-e modulation sources MESG( NONE - Standard k-e model MESG( READVDU(CTURB,CHAR,NONE) REAL(RHOS,RHOG,EMUGAS,RGAS,RSOL,TKEIN,EPSIN,FLOWG,FLOWS) REAL(VGAS,VSOL,DIAM,GRAD,PLEN,DIAMS,REY,GRAVAC,MLOAD) RHOS=1020.;GRAVAC=-9.81;DIAM=0.0305;RHOG=1.178;GRAD=0.5*DIAM MESG( Enter JRUN: default =1 MESG( =1 solids-to-air mass-flow ratio=1.0 MESG( =2 solids-to-air mass-flow ratio=2.1 READVDU(JRUN,INT,1) IF(JRUN.EQ.1) THEN ** forward step-size is 0.175*diameter + MLOAD=1.0;REY=3.E4;PLEN=70.*DIAM;NSTEP=400 ELSE ** forward step-size is 0.2*diameter + MLOAD=2.1;REY=3.3E4;PLEN=100.*DIAM;NSTEP=500 ENDIF plen plen=plen*4 RSOL=MLOAD*RHOG/RHOS;RGAS=1.0-RSOL;EMUGAS=1.868E-5 VGAS=REY*EMUGAS/(RHOG*DIAM);VSOL=VGAS *** specify mean particle diameter DIAMS=200.E-6 GROUP 1. Run title and other preliminaries GROUP 2. Transience; time-step specification PARAB=T GROUP 3. X-direction grid specification CARTES=F;XULAST=0.1;NX=1 GROUP 4. Y-direction grid specification GRDPWR(Y,25,GRAD,1.0) GROUP 5. Z-direction grid specification NZ=10 nz=200 NZ=NSTEP GRDPWR(Z,NZ,NZ*PLEN/NSTEP,1.0) GRDPWR(Z,NZ,PLEN,1.0) GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named ONEPHS=F;SOLVE(P1,V1,V2,W1,W2,R1,R2);TURMOD(KEMODL) STORE(CFIP,ENUT,CD,REYN) GROUP 8. Terms (in differential equations) & devices GROUP 9. Properties of the medium (or media) RHO1=RHOG;RHO2=RHOS FLOWG=RHOG*RGAS*VGAS;FLOWS=RHOS*RSOL*VSOL;ENUL=EMUGAS/RHOG TKEIN=(0.05*VGAS)**2;EPSIN=0.1643*TKEIN**1.5/(0.1*GRAD) PRNDTL(V2)=1.E10;PRNDTL(W2)=1.E10;PRT(V2)=1.E10;PRT(W2)=1.E10 GROUP 10. Inter-phase-transfer processes and properties CFIPS=GRND7;CFIPA=1.E-3;RLOLIM=1.E-6;CFIPB=DIAMS GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=VGAS;FIINIT(W2)=VSOL;FIINIT(R1)=RGAS;FIINIT(R2)=RSOL GROUP 12. Unused GROUP 13. Boundary conditions and special sources ** inlet boundary INLET(IN,LOW,1,NX,1,NY,1,1,1,1) VALUE(IN,P1,FLOWG);VALUE(IN,W1,VGAS) VALUE(IN,P2,FLOWS);VALUE(IN,W2,VSOL) VALUE(IN,KE,TKEIN);VALUE(IN,EP,EPSIN) ** gravity PATCH(GRAVITY,PHASEM,1,NX,1,NY,1,NZ,1,1) COVAL(GRAVITY,W1,FIXFLU,GRAVAC);COVAL(GRAVITY,W2,FIXFLU,GRAVAC) ** wall boundary WALL(NWALL,NORTH,1,NX,NY,NY,1,NZ,1,1) ** turbulence-modulation sources CASE :CTURB: OF WHEN NONE,4 + MESG(No turbulence modulation sources + TEXT(AIR-SOLIDS FLOW- No turb. Mods WHEN MOST,4 + MESG(Mostafa-Mongia turbulence-modulation sources + PATCH(KEDISP,CELL,1,NX,1,NY,1,NZ,1,LSTEP);STORE(TE,TP) + COVAL(KEDISP,KE,GRND1,ZERO);COVAL(KEDISP,EP,GRND1,ZERO) + TEXT(AIR-SOLIDS FLOW- Mostafa-Mongia turb. mods WHEN CHEN,4 + TEXT(AIR-SOLIDS FLOW- Chen-Wood turb. mods + MESG(Chen-Wood turbulence-modulation sources + PATCH(KEDISP,CELL,1,NX,1,NY,1,NZ,1,LSTEP);STORE(TE,TP) + COVAL(KEDISP,KE,GRND2,ZERO);COVAL(KEDISP,EP,GRND2,ZERO) ENDCASE GROUP 15. Termination of sweeps LITHYD=10;SELREF=T;RESFAC=0.01 GROUP 16. Termination of iterations GROUP 17. Under-relaxation devices RELAX(V1,LINRLX,0.4);RELAX(V2,LINRLX,0.4) RELAX(W1,LINRLX,0.5);RELAX(W2,LINRLX,0.5) RELAX(R1,LINRLX,0.3);RELAX(R2,LINRLX,0.3) RELAX(KE,LINRLX,0.3);RELAX(EP,LINRLX,0.3) GROUP 18. Limits on variables or increments to them VARMIN(W1)=1.E-10;VARMIN(W2)=1.E-10 VARMIN(R1)=1.E-10;VARMIN(R2)=1.E-10 GROUP 19. Data communicated by satellite to GROUND GROUP 20. Preliminary print-out GROUP 21. Print-out of variables NYPRIN=1 NZPRIN=NZ/5 GROUP 22. Spot-value print-out IYMON=NY-2;TSTSWP=LITHYD;NPLT=4;IDISPA=NSTEP/10 GROUP 23. Field print-out and plot control patch(endprof,profil,1,1,1,ny,1,nz,1,1) coval(endprof,w1,0,0) coval(endprof,w2,0,0) idispa=10 tstswp=-10 #maxabs GROUP 24. Dumps for restarts