PHOTON USE
  p
  n10
 
 
 
  set vec ref
  2.5
  rot z
  180
  msg(    formation of water jet and vector field at t=0.1s
  gr ou x 1
  con vfol x 1 sh
  0.45 0.55 40
  vec x 1
  pause
  p
  n20
 
 
 
  set vec ref
  2.5
  rot z
  180
  msg(    formation of water jet and vector field at t=0.2s
  gr ou x 1
  con vfol x 1 sh
  0.45 0.55 40
  vec x 1
  pause
  p
  n30
 
 
 
  set vec ref
  2.5
  rot z
  180
  msg(    formation of water jet and vector field at t=0.3s
  gr ou x 1
  con vfol x 1 sh
  0.45 0.55 40
  vec x 1
  pause
  p
  n40
 
 
 
  set vec ref
  2.5
  rot z
  180
  msg(    formation of water jet and vector field at t=0.4s
  gr ou x 1
  con vfol x 1 sh
  0.45 0.55 40
  vec x 1
  msg            -
  msg Press e to END
  enduse
 
    GROUP 1. Run title and other preliminaries
TEXT(FALLING WATER JET - HOL METHOD:P103
TITLE
  DISPLAY
  FREE SURFACE EXAMPLES - Falling Water Jet
                               Height Of Liquid method (HOL)
 
  2-dimensional (y-z), Cartesian, transient, elliptic simulation
 
  This case models discharge of water through the hole at the bottom
  of the tank. Sketch of the problem is given below.
 
                       water
                   |    |     |
    symetry plane       v     |                  z
                   |    hole  |  tank        +---->
                       /      |              |
                   |   -------+              v y
                       |   air
                   |   |
                      |- water jet
                   |  |
  enddis
 
    ** If the water jet falls from a cylindrical
       tank, logical IHOLA should be set to 2 .
    GROUP 2. Transience; time-step specification
STEADY=F;LSTEP=40;TFRAC(1)=-LSTEP ;TFRAC(2)=0.01
    GROUP 4. Y-direction grid specification
NREGY=2;INTEGER(NY1,NY2); NY1= 5;NY2= 7
IREGY=1;GRDPWR(Y,NY1,0.30,0.7)
IREGY=2;GRDPWR(Y,NY2,0.20,1.0)
    GROUP 5. Z-direction grid specification
NREGZ=2;INTEGER(NZ1,NZ2); NZ1= 7;NZ2= 5
IREGZ=1;GRDPWR(Z,NZ1,0.05,1.0)
IREGZ=2;GRDPWR(Z,NZ2,0.10,1.5)
    GROUP 7. Variables stored, solved & named
STORE(DEN1,PRPS);SOLVE(VFOL)
SOLUTN(P1,Y,Y,Y,N,N,N);SOLUTN(V1,Y,Y,N,N,N,N)
SOLUTN(W1,Y,Y,N,N,N,N)
    GROUP 8. Terms (in differential equations) & devices
GALA=T;TERMS(VFOL,N,N,N,N,P,P)
    GROUP 9. Properties of the medium (or media)

    GROUP 11. Initialization of variable or porosity fields
REAL(UIN);UIN=0.2
FIINIT(P1)=0.0;FIINIT(V1)=UIN;FIINIT(W1)=0.0;FIINIT(VFOL)=0.0
FIINIT(DEN1)=1.189
INIADD=F
PATCH(LIQ1,INIVAL,1,NX,1,NY1,1,NZ,1,1)
COVAL(LIQ1,VFOL,ZERO,1.0);COVAL(LIQ1,DEN1,ZERO,1000.5)
PATCH(LIQ2,INIVAL,1,NX,NY1+1,NY,1,NZ1,1,1)
COVAL(LIQ2,VFOL,ZERO,1.0);COVAL(LIQ2,DEN1,ZERO,1000.5)
    GROUP 13. Boundary conditions and special sources
    ** incoming water
PATCH(INLET,SOUTH,1,NX,1,1,1,NZ,1,LSTEP)
COVAL(INLET,P1,FIXFLU,1000.5*UIN);COVAL(INLET,V1,ONLYMS,UIN)
COVAL(INLET,VFOL,ONLYMS,1.0/1000.5)
    ** outgoing water and air
PATCH(EXIT,CELL,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(EXIT,P1,GRND,0.0)
PATCH(SIDE,CELL,1,NX,NY1+1,NY,NZ,NZ,1,LSTEP)
COVAL(SIDE,P1,FIXP,0.0)
    ** tank bottom
PATCH(FIXV,NORTH,1,NX,NY1,NY1,NZ1+1,NZ,1,LSTEP)
COVAL(FIXV,V1,FIXVAL,0.0)
    ** tank side wall
PATCH(TWAL,HWALL,1,NX,1,NY1,NZ,NZ,1,LSTEP)
COVAL(TWAL,V1,1.0,0.0)
    ** gravity force
PATCH(GRAV,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP)
COVAL(GRAV,V1,FIXFLU,9.81)
    GROUP 15. Termination of sweeps
LSWEEP=5
    GROUP 16. Termination of iterations
RESREF(P1)=1.E-8;RESREF(V1)=1.E-8;RESREF(W1)=1.E-8
    GROUP 17. Under-relaxation devices
RELAX(V1,FALSDT,1.);RELAX(W1,FALSDT,1.)
    GROUP 19. Data communicated by satellite to GROUND
IDISPB=1;IDISPC=LSTEP;IDISPA=LSTEP/4;CSG1=N;IPRPSA=67;IPRPSB=0
HOL=T
SPEDAT(SET,GXMONI,TRANSIENT,L,F)
    GROUP 22. Spot-value print-out
TSTSWP=-1;NTPRIN=LSTEP/2
NPRMON=LSWEEP;IYMON=NY1;IZMON=NZ1
    GROUP 23. Field print-out and plot control
OUTPUT(P1,Y,Y,Y,Y,Y,Y);OUTPUT(V1,Y,Y,Y,Y,Y,Y)
OUTPUT(W1,Y,Y,Y,Y,Y,Y);OUTPUT(VFOL,Y,N,y,N,N,N)
OUTPUT(DEN1,Y,N,y,N,N,N);IHOLA=3