PHOTON USE p n10 set vec ref 2.5 rot z 180 msg( formation of water jet and vector field at t=0.1s gr ou x 1 con vfol x 1 sh 0.45 0.55 40 vec x 1 pause p n20 set vec ref 2.5 rot z 180 msg( formation of water jet and vector field at t=0.2s gr ou x 1 con vfol x 1 sh 0.45 0.55 40 vec x 1 pause p n30 set vec ref 2.5 rot z 180 msg( formation of water jet and vector field at t=0.3s gr ou x 1 con vfol x 1 sh 0.45 0.55 40 vec x 1 pause p n40 set vec ref 2.5 rot z 180 msg( formation of water jet and vector field at t=0.4s gr ou x 1 con vfol x 1 sh 0.45 0.55 40 vec x 1 msg - msg Press e to END enduse GROUP 1. Run title and other preliminaries TEXT(FALLING WATER JET - HOL METHOD:P103 TITLE DISPLAY FREE SURFACE EXAMPLES - Falling Water Jet Height Of Liquid method (HOL) 2-dimensional (y-z), Cartesian, transient, elliptic simulation This case models discharge of water through the hole at the bottom of the tank. Sketch of the problem is given below. water | | | symetry plane v | z | hole | tank +----> / | | | -------+ v y | air | | |- water jet | | enddis ** If the water jet falls from a cylindrical tank, logical IHOLA should be set to 2 . GROUP 2. Transience; time-step specification STEADY=F;LSTEP=40;TFRAC(1)=-LSTEP ;TFRAC(2)=0.01 GROUP 4. Y-direction grid specification NREGY=2;INTEGER(NY1,NY2); NY1= 5;NY2= 7 IREGY=1;GRDPWR(Y,NY1,0.30,0.7) IREGY=2;GRDPWR(Y,NY2,0.20,1.0) GROUP 5. Z-direction grid specification NREGZ=2;INTEGER(NZ1,NZ2); NZ1= 7;NZ2= 5 IREGZ=1;GRDPWR(Z,NZ1,0.05,1.0) IREGZ=2;GRDPWR(Z,NZ2,0.10,1.5) GROUP 7. Variables stored, solved & named STORE(DEN1,PRPS);SOLVE(VFOL) SOLUTN(P1,Y,Y,Y,N,N,N);SOLUTN(V1,Y,Y,N,N,N,N) SOLUTN(W1,Y,Y,N,N,N,N) GROUP 8. Terms (in differential equations) & devices GALA=T;TERMS(VFOL,N,N,N,N,P,P) GROUP 9. Properties of the medium (or media) GROUP 11. Initialization of variable or porosity fields REAL(UIN);UIN=0.2 FIINIT(P1)=0.0;FIINIT(V1)=UIN;FIINIT(W1)=0.0;FIINIT(VFOL)=0.0 FIINIT(DEN1)=1.189 INIADD=F PATCH(LIQ1,INIVAL,1,NX,1,NY1,1,NZ,1,1) COVAL(LIQ1,VFOL,ZERO,1.0);COVAL(LIQ1,DEN1,ZERO,1000.5) PATCH(LIQ2,INIVAL,1,NX,NY1+1,NY,1,NZ1,1,1) COVAL(LIQ2,VFOL,ZERO,1.0);COVAL(LIQ2,DEN1,ZERO,1000.5) GROUP 13. Boundary conditions and special sources ** incoming water PATCH(INLET,SOUTH,1,NX,1,1,1,NZ,1,LSTEP) COVAL(INLET,P1,FIXFLU,1000.5*UIN);COVAL(INLET,V1,ONLYMS,UIN) COVAL(INLET,VFOL,ONLYMS,1.0/1000.5) ** outgoing water and air PATCH(EXIT,CELL,1,NX,NY,NY,1,NZ,1,LSTEP) COVAL(EXIT,P1,GRND,0.0) PATCH(SIDE,CELL,1,NX,NY1+1,NY,NZ,NZ,1,LSTEP) COVAL(SIDE,P1,FIXP,0.0) ** tank bottom PATCH(FIXV,NORTH,1,NX,NY1,NY1,NZ1+1,NZ,1,LSTEP) COVAL(FIXV,V1,FIXVAL,0.0) ** tank side wall PATCH(TWAL,HWALL,1,NX,1,NY1,NZ,NZ,1,LSTEP) COVAL(TWAL,V1,1.0,0.0) ** gravity force PATCH(GRAV,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP) COVAL(GRAV,V1,FIXFLU,9.81) GROUP 15. Termination of sweeps LSWEEP=5 GROUP 16. Termination of iterations RESREF(P1)=1.E-8;RESREF(V1)=1.E-8;RESREF(W1)=1.E-8 GROUP 17. Under-relaxation devices RELAX(V1,FALSDT,1.);RELAX(W1,FALSDT,1.) GROUP 19. Data communicated by satellite to GROUND IDISPB=1;IDISPC=LSTEP;IDISPA=LSTEP/4;CSG1=N;IPRPSA=67;IPRPSB=0 HOL=T SPEDAT(SET,GXMONI,TRANSIENT,L,F) GROUP 22. Spot-value print-out TSTSWP=-1;NTPRIN=LSTEP/2 NPRMON=LSWEEP;IYMON=NY1;IZMON=NZ1 GROUP 23. Field print-out and plot control OUTPUT(P1,Y,Y,Y,Y,Y,Y);OUTPUT(V1,Y,Y,Y,Y,Y,Y) OUTPUT(W1,Y,Y,Y,Y,Y,Y);OUTPUT(VFOL,Y,N,y,N,N,N) OUTPUT(DEN1,Y,N,y,N,N,N);IHOLA=3