TALK=T;RUN(1,1) PHOTON USE p vi x;up z con mark x 1 fil;0.01 gr x 1 msg MARK specifying the inlet areas pause con cl;gr cl;red gr ou x 1 vec x 1 sh msg Velocity vectors at the inlet plane pause gr cl;ve cl vi y;up z gr ou y 5 vec y 5 sh msg Velocity vectors at the plane of symmetry msg Press E to end ENDUSE DISPLAY This example shows how to use grid-free features of PLANT for calculation of scaling factors resulting from the presentation of circle inlets on Cartesian coordinate system. The problem is to introduce the correct mass and momentum in-fluxes for the concentric inlets at the east wall of lower part of 3D rectangular chamber with a swirl in annular secondary flow inlet. It is supposed that MARK of unity value marks the primary inlet area, while MARK=2 is used to specify secondary inlet cells. ENDDIS PLANTBEGIN REAL(PI);PI=3.14159 REAL(UPRIM,USEC,USWIRL,YIC,ZIC) ** Primary inlet velocity UPRIM= 5. ** Secondary inlet velocity USEC= 10. ** Secondary inlet constant swirl angular velocity USWIRL=25. ** Origin of inlet center * Z-coordinate ZIC=5.25 * Y-coordinate YIC=5.00 ** Inlet diameters REAL(RAD1,RAD2) RAD1=2.0;RAD2=4. ** Drill the hole of outer diameter of secondary inlet PATCH(INITMRK1,INIVAL,1,1,1,NY,1,NZ,1,1)VAL=SPHERE(2.0,0.0,5.0,5.25,4.0) INIT (INITMRK1,MARK,0.,GRND) PRINT(VAL1=VAL) ** Drill the hole of primary inlet diameter PATCH(INITMRK2,INIVAL,1,1,1,NY,1,NZ,1,1) VAL=SPHERE(1.0,0.0,5.0,5.25,2.0) INIT (INITMRK2,MARK,0.,GRND) PRINT(VAL2=VAL) Two circular holes are "drilled" at the west face of the domain by way of SPHERE function. The provide the primary inlet of 2 m diameter ( MARK=1) and secondary annulus of 1 m width ( MARK=2) . The origins of inlet center are at X=0.0, YIC and ZIC. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Primary inlet mass flux coefficient PRIMF=SUM(AEAST/(:PI:*:RAD1:**2)) TEXT(Primary inlet mass flux coefficient) REGION() 1 /ISWEEP.LE.2 Here, primary inlet mass flux coefficient, which is reciprocal to scaling factor representing ratio of actual to cartesian areas is calculated as a sum over all cells occupied by primary inlet marker. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Secondary inlet mass flux coefficient SECNF=SUM(AEAST/(:PI:*(:RAD2:**2-:RAD1:**2))) TEXT(Secondary inlet mass flux coefficient) REGION() 2 /ISWEEP.LE.2 Here, secondary inlet mass flux coefficient, which is reciprocal to scaling factor representing ratio of actual to cartesian areas is calculated as a sum over all cells occupied by secondary inlet marker. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Primary inlet mass flux PATCH(SS001,WEST,1,NX,1,NY,1,NZ,1,1) CO =FIXFLU VAL=:RHO1:*:UPRIM:/PRIMF/FIXFLU COVAL(SS001,P1,GRND,GRND) Primary inlet mass flux is corrected above for all cells occupied by primary inlet marker appearing in the number of PATCH name, SS001. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Primary inlet momentum flux CO =0.0 VAL=:UPRIM: COVAL(SS001,U1,GRND,GRND) The corrected momentum influx will be calculated following the above satement. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Secondary inlet mass flux PATCH(SS002,WEST,1,NX,1,NY,1,NZ,1,1) CO =FIXFLU VAL=:RHO1:*:USEC:/SECNF/FIXFLU COVAL(SS002,P1,GRND,GRND) Secondary inlet mass flux is corrected above for all cells occupied by primary inlet marker appearing in the number of PATCH name, SS002. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Secondary inlet momentum flux CO =0.0 VAL=:USEC: COVAL(SS002,U1,GRND,GRND) The corrected longitudinal momentum influx will be calculated following the above statement. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Secondary inlet V1 swirl flux CO =0.0 VAL=:USWIRL:*(ZGNZ-:ZIC:)/ SQRT((YV2D-:YIC:$ )**2+(ZGNZ-:ZIC:)**2) COVAL(SS002,V1,GRND,GRND) The corrected lateral momentum influx will be calculated following the above statement. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< ** Secondary inlet W1 swirl flux CO =0.0 VAL=-:USWIRL:*(YG2D-:YIC:)/ SQRT((YG2D-:YIC:)**$ 2+(ZWNZ-:ZIC:)**2) COVAL(SS002,W1,GRND,GRND) The corrected Z-wise momentum influx will be calculated following the above statement. <<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<< PLANTEND ************************************************************ Group 1. Run Title and Number ************************************************************ ************************************************************ TEXT(In-Form equivalent of PLANT case Z615 ) ************************************************************ ************************************************************ IRUNN = 1 ;LIBREF = 615 ************************************************************ Group 2. Time dependence STEADY = T ************************************************************ Group 3. X-Direction Grid Spacing CARTES = T NX = 30 XULAST =10. XFRAC(1)=0.033333 ;XFRAC(2)=0.066667 XFRAC(3)=0.1 ;XFRAC(4)=0.133333 XFRAC(5)=0.166667 ;XFRAC(6)=0.2 XFRAC(7)=0.233333 ;XFRAC(8)=0.266667 XFRAC(9)=0.3 ;XFRAC(10)=0.333333 XFRAC(11)=0.366667 ;XFRAC(12)=0.4 XFRAC(13)=0.433333 ;XFRAC(14)=0.466667 XFRAC(15)=0.5 ;XFRAC(16)=0.533333 XFRAC(17)=0.566667 ;XFRAC(18)=0.6 XFRAC(19)=0.633333 ;XFRAC(20)=0.666667 XFRAC(21)=0.7 ;XFRAC(22)=0.733333 XFRAC(23)=0.766667 ;XFRAC(24)=0.8 XFRAC(25)=0.833333 ;XFRAC(26)=0.866667 XFRAC(27)=0.9 ;XFRAC(28)=0.933333 XFRAC(29)=0.966667 ;XFRAC(30)=1. ************************************************************ Group 4. Y-Direction Grid Spacing NY = 30 YVLAST =10. YFRAC(1)=0.033333 ;YFRAC(2)=0.066667 YFRAC(3)=0.1 ;YFRAC(4)=0.133333 YFRAC(5)=0.166667 ;YFRAC(6)=0.2 YFRAC(7)=0.233333 ;YFRAC(8)=0.266667 YFRAC(9)=0.3 ;YFRAC(10)=0.333333 YFRAC(11)=0.366667 ;YFRAC(12)=0.4 YFRAC(13)=0.433333 ;YFRAC(14)=0.466667 YFRAC(15)=0.5 ;YFRAC(16)=0.533333 YFRAC(17)=0.566667 ;YFRAC(18)=0.6 YFRAC(19)=0.633333 ;YFRAC(20)=0.666667 YFRAC(21)=0.7 ;YFRAC(22)=0.733333 YFRAC(23)=0.766667 ;YFRAC(24)=0.8 YFRAC(25)=0.833333 ;YFRAC(26)=0.866667 YFRAC(27)=0.9 ;YFRAC(28)=0.933333 YFRAC(29)=0.966667 ;YFRAC(30)=1. ************************************************************ Group 5. Z-Direction Grid Spacing PARAB = F NZ = 40 ZWLAST =35. ZFRAC(1)=0.014286 ;ZFRAC(2)=0.028571 ZFRAC(3)=0.042857 ;ZFRAC(4)=0.057143 ZFRAC(5)=0.071429 ;ZFRAC(6)=0.085714 ZFRAC(7)=0.1 ;ZFRAC(8)=0.114286 ZFRAC(9)=0.128571 ;ZFRAC(10)=0.142857 ZFRAC(11)=0.157143 ;ZFRAC(12)=0.171429 ZFRAC(13)=0.185714 ;ZFRAC(14)=0.2 ZFRAC(15)=0.214286 ;ZFRAC(16)=0.228571 ZFRAC(17)=0.242857 ;ZFRAC(18)=0.257143 ZFRAC(19)=0.271429 ;ZFRAC(20)=0.285714 ZFRAC(21)=0.302603 ;ZFRAC(22)=0.325882 ZFRAC(23)=0.352393 ;ZFRAC(24)=0.381249 ZFRAC(25)=0.411983 ;ZFRAC(26)=0.444303 ZFRAC(27)=0.478004 ;ZFRAC(28)=0.512935 ZFRAC(29)=0.548976 ;ZFRAC(30)=0.586034 ZFRAC(31)=0.624032 ;ZFRAC(32)=0.662905 ZFRAC(33)=0.702597 ;ZFRAC(34)=0.74306 ZFRAC(35)=0.784253 ;ZFRAC(36)=0.826138 ZFRAC(37)=0.868684 ;ZFRAC(38)=0.91186 ZFRAC(39)=0.95564 ;ZFRAC(40)=1. ************************************************************ Group 6. Body-Fitted Coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd ONEPHS = T NAME(1)=P1 ;NAME(3)=U1 NAME(5)=V1 ;NAME(7)=W1 NAME(12)=KE ;NAME(13)=EP NAME(147)=SECF ;NAME(148)=PRIF NAME(149)=ENUT ;NAME(150)=MARK * Y in SOLUTN argument list denotes: * 1-stored 2-solved 3-whole-field * 4-point-by-point 5-explicit 6-harmonic averaging SOLUTN(P1,Y,Y,Y,N,N,Y) SOLUTN(U1,Y,Y,Y,N,N,Y) SOLUTN(V1,Y,Y,Y,N,N,Y) SOLUTN(W1,Y,Y,Y,N,N,Y) SOLUTN(KE,Y,Y,N,N,N,N) SOLUTN(EP,Y,Y,N,N,N,N) SOLUTN(SECF,Y,N,N,N,N,Y) SOLUTN(PRIF,Y,N,N,N,N,Y) SOLUTN(ENUT,Y,N,N,N,N,Y) SOLUTN(MARK,Y,N,N,N,N,Y) VIST = 149 ************************************************************ Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS(P1,Y,Y,Y,N,Y,Y) TERMS(U1,Y,Y,Y,Y,Y,Y) TERMS(V1,Y,Y,Y,Y,Y,Y) TERMS(W1,Y,Y,Y,Y,Y,Y) TERMS(KE,N,Y,Y,Y,Y,N) TERMS(EP,N,Y,Y,Y,Y,N) DIFCUT =0.5 ;ZDIFAC =1. GALA = F ;ADDDIF = F NEWENT = T ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1 ************************************************************ Group 9. Properties used if PRPS is not stored, and where PRPS = -1.0 if it is! RHO1 =1. ;TMP1 =0. ;EL1 = GRND4 TSURR =0. ;TEMP0 =0. ;PRESS0 =0. DVO1DT =0. ;DRH1DP =0. EMISS =0. ;SCATT =0. RADIA =0. ;RADIB =0. EL1A =0. ;EL1B =0. ;EL1C =0. ENUL =1.0E-02 ;ENUT = GRND3 ENUTA =0. ;ENUTB =0. ;ENUTC =0. IENUTA = 0 PRNDTL(U1)=1. ;PRNDTL(V1)=1. PRNDTL(W1)=1. ;PRNDTL(KE)=1. PRNDTL(EP)=1. PRT(U1)=1. ;PRT(V1)=1. PRT(W1)=1. ;PRT(KE)=1. PRT(EP)=1.314 CP1 =1. ;CP2 =1. ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initial field variables (PHIs) FIINIT(P1)=1.0E-10 ;FIINIT(U1)=1.0E-10 FIINIT(V1)=1.0E-10 ;FIINIT(W1)=1.0E-10 FIINIT(KE)=1.0E-02 ;FIINIT(EP)=1.0E-02 FIINIT(SECF)=1.0E-10 ;FIINIT(PRIF)=1.0E-10 FIINIT(ENUT)=1.0E-02 ;FIINIT(MARK)=0. PATCH(.PATCH1 ,INIVAL,0. ,0. ,0. ,1. ,0. ,1. ,1. ,1. ) INIADD = F FSWEEP = 1 NAMFI =CHAM ************************************************************ Group 12. Patchwise adjustment of terms Patches for this group are printed with those for Group 13. Their names begin either with GP12 or & ************************************************************ Group 13. Boundary & Special Sources PATCH(OUT ,HIGH , 1, 10, 1, 10, 10, 10, 1, 1) COVAL(OUT ,P1 ,1. ,0. ) PATCH(KESOURCE,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(KESOURCE,KE , GRND4 , GRND4 ) COVAL(KESOURCE,EP , GRND4 , GRND4 ) PATCH(INLET1 ,WEST , 1, 1, 1, 30, 1, 40, 1, 1) COVAL(INLET1 ,P1 ,In-Form:source - see Grp 19) COVAL(INLET1 ,U1 ,In-Form:source - see Grp 19) PATCH(INLET2 ,WEST , 1, 1, 1, 30, 1, 40, 1, 1) COVAL(INLET2 ,P1 ,In-Form:source - see Grp 19) COVAL(INLET2 ,U1 ,In-Form:source - see Grp 19) COVAL(INLET2 ,V1 ,In-Form:source - see Grp 19) COVAL(INLET2 ,W1 ,In-Form:source - see Grp 19) XCYCLE = F EGWF = T WALLCO = GRND2 ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 200 ;ISWC1 = 1 LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1 SELREF = T RESFAC =1.0E-02 ************************************************************ Group 16. Terminate Iterations LITER(P1)=20 ;LITER(U1)=10 LITER(V1)=10 ;LITER(W1)=10 LITER(KE)=20 ;LITER(EP)=20 ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03 ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03 ENDIT(KE)=1.0E-03 ;ENDIT(EP)=1.0E-03 ************************************************************ Group 17. Relaxation RELAX(P1,LINRLX,1.) RELAX(U1,FALSDT,1.) RELAX(V1,FALSDT,1.) RELAX(W1,FALSDT,1.) RELAX(KE,LINRLX,0.5) RELAX(EP,LINRLX,0.5) RELAX(SECF,LINRLX,1.) RELAX(PRIF,LINRLX,1.) RELAX(ENUT,LINRLX,1.) RELAX(MARK,LINRLX,1.) KELIN = 0 OVRRLX =0. EXPERT = F ;NNORSL = F ************************************************************ Group 18. Limits VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10 VARMAX(U1)=0.3 ;VARMIN(U1)=-1.0E+11 VARMAX(V1)=0.3 ;VARMIN(V1)=-1.0E+11 VARMAX(W1)=0.3 ;VARMIN(W1)=-1.0E+11 VARMAX(KE)=1.0E+10 ;VARMIN(KE)=1.0E-03 VARMAX(EP)=1.0E+10 ;VARMIN(EP)=1.0E-03 VARMAX(SECF)=1.0E+10 ;VARMIN(SECF)=-1.0E+10 VARMAX(PRIF)=1.0E+10 ;VARMIN(PRIF)=-1.0E+10 VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10 VARMAX(MARK)=1.0E+10 ;VARMIN(MARK)=-1.0E+10 ************************************************************ Group 19. Data transmitted to GROUND GENK = T PARSOL = F CONWIZ = T ISG50 = 1 ISG52 = 1 ISG62 = 1 SPEDAT(SET,INFOB,*!.PATCH1,C,=SPHERE(0&5.&5.25&4.&0&0&0)-SPHERE(0$) SPEDAT(SET,INFOB,*!.PATCH1,C,&5.&5.25&2.&0&0&0)!INFOB_2) SPEDAT(SET,INFOB,*!.PATCH1,C,=SPHERE(0&5.&5.25&2.&0&0&0)!INFOB_1) SPEDAT(SET,MAKE,PRIMF,C,=1.) SPEDAT(SET,STORED,PRIMF!.PATCH1,C,=SUM(AEAST/(3.14159*2.^2))!INFO$) SPEDAT(SET,STORED,PRIMF!.PATCH1,C,B_1!IF(ISWEEP.LE.2)!ZSLFIN) SPEDAT(SET,STORED,PRIF,C,=PRIMF!IF(ISWEEP.LE.2)!ZSLFIN) SPEDAT(SET,LONGNAME,PRIF,C,Primary_inlet_mass_flux_coefficient) SPEDAT(SET,MAKE,SECNF,C,=1.) SPEDAT(SET,STORED,SECNF!.PATCH1,C,=SUM(AEAST/(3.14159*(4.^2-2.^2)$) SPEDAT(SET,STORED,SECNF!.PATCH1,C,))!INFOB_2!IF(ISWEEP.LE.2)!ZSLF$) SPEDAT(SET,STORED,SECNF!.PATCH1,C,IN) SPEDAT(SET,STORED,SECF,C,=SECNF!IF(ISWEEP.LE.2)!ZSLFIN) SPEDAT(SET,LONGNAME,SECF,C,Secondary_inlet_mass_flux_coefficient) SPEDAT(SET,SOURCE,R1!INLET1,C,=1.*5./PRIMF!INFOB_1) SPEDAT(SET,SOURCE,U1!INLET1,C,=1.*5.*5./PRIMF!INFOB_1) SPEDAT(SET,SOURCE,R1!INLET2,C,=1.*10./SECNF!INFOB_2) SPEDAT(SET,SOURCE,U1!INLET2,C,=1.*10.*10./SECNF!INFOB_2) SPEDAT(SET,SOURCE,V1!INLET2,C,=1.*10./SECNF*25.*(ZG-5.25)/SQRT((Y$) SPEDAT(SET,SOURCE,V1!INLET2,C,V-5.)^2+(ZG-5.25)^2)!INFOB_2) SPEDAT(SET,SOURCE,W1!INLET2,C,=1.*10./SECNF*(-25.)*(YG-5.)/SQRT(($) SPEDAT(SET,SOURCE,W1!INLET2,C,YG-5.)^2+(ZW-5.25)^2)!INFOB_2) SPEDAT(SET,STORED,MARK,C,=1!INFOB_1!IF(ISWEEP.LE.2)!ZSLFIN) SPEDAT(SET,STORED,MARK,C,=2!INFOB_2!IF(ISWEEP.LE.2)!ZSLFIN) SPEDAT(SET,MAXINC,KE,R,10.) SPEDAT(SET,MAXINC,EP,R,10.) SPEDAT(SET,GXMONI,PLOTALL,L,T) ************************************************************ Group 20. Preliminary Printout DISTIL = T ;NULLPR = F NDST = 0 DSTTOL =1.0E-02 EX(P1)=7.215 ;EX(U1)=2.095 EX(V1)=1.708 ;EX(W1)=4.871 EX(KE)=0. ;EX(EP)=0. EX(SECF)=0. ;EX(PRIF)=0. EX(ENUT)=0. ;EX(MARK)=0.028 ************************************************************ Group 21. Print-out of Variables INIFLD = F ;SUBWGR = F * Y in OUTPUT argument list denotes: * 1-field 2-correction-eq. monitor 3-selective dumping * 4-whole-field residual 5-spot-value table 6-residual table OUTPUT(P1,Y,N,Y,Y,Y,Y) OUTPUT(U1,Y,N,Y,Y,Y,Y) OUTPUT(V1,Y,N,Y,Y,Y,Y) OUTPUT(W1,Y,N,Y,Y,Y,Y) OUTPUT(KE,Y,N,Y,Y,Y,Y) OUTPUT(EP,Y,N,Y,Y,Y,Y) OUTPUT(SECF,Y,N,Y,N,N,N) OUTPUT(PRIF,Y,N,Y,N,N,N) OUTPUT(ENUT,Y,N,Y,N,N,N) OUTPUT(MARK,Y,N,Y,N,N,N) ************************************************************ Group 22. Monitor Print-Out IXMON = 5 ;IYMON = 9 ;IZMON = 1 NPRMON = 100000 ;NPRMNT = 1 ;TSTSWP = -1 UWATCH = T ;USTEER = T HIGHLO = F ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ;NUMCLS = 5 NXPRIN = 1 ;IXPRF = 1 ;IXPRL = 10000 NYPRIN = 1 ;IYPRF = 1 ;IYPRL = 10000 NZPRIN = 1 ;IZPRF = 1 ;IZPRL = 10000 XZPR = F ;YZPR = F IPLTF = 1 ;IPLTL = -1 ;NPLT = -1 ISWPRF = 1 ;ISWPRL = 100000 ITABL = 3 ;IPROF = 1 ABSIZ =0.5 ;ORSIZ =0.4 NTZPRF = 1 ;NCOLPF = 50 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20 No PATCHes yet used for this Group ************************************************************ Group 24. Dumps For Restarts SAVE = T ;NOWIPE = F NSAVE =CHAM STOP