TALK=T;RUN(1,1) DISPLAY Cases 190,191 and 192 concern steady, incompressible, turbulent plane flow along a smooth flat plate with zero pressure gradient. The plate is maintained at a constant temperature above that of the free stream. Pressure fixed at zero, velocity and temperature take on the prescribed values WFREE and TFREE Constant - - - - - - - - - - - - - - - - - - - - - - - - - - - specified mass-flux, velocity and temperature _____________________________________________________ profiles ///////////////////////////////////////////////////// Wall at constant temperature TWALL ^ y| |---> z The calculations are started 0.487 metres downstream of the leading edge, corresponding to a length Reynolds number REx of 1.E6. The initial mean-velocity profile is taken from published experimental data, and the initial turbulence-energy profile is estimated from the local friction velocity by assuming a distribution compatible with that measured in the fully-developed boundary layer. The calculations are made with 20 grid cells across the jet and a forward step size of 30% of the local width of the boundary layer. 100 forward steps are taken so that the marching integration is terminated at a length Reynolds number of about 2.1E6. In case 190, the Prandtl mixing-length turbulence model is used and the mixing-length distribution is prescribed according to the Escudier formulae, ie Lm=k*y for y/d<<0.09/k, and Lm=0.09*d for y/d>0.09. Here k is the von Karman's constant and y is the normal distance from the wall. The turbulent Prandtl number is set equal to 0.9 and the molecular Prandtl number to 0.71. Experimental data indicate that the local skin friction coefficient Cf is fairly well described by the Schultz-Grunow correlation, i.e. Cf = 0.37*(LOG10(REx))**-2.58 where Cf = 2.*TAUW/(RHOFRE*WFREE**2). For gases with Prandtl numbers Pr in excess of 0.5, the local Stanton number St is quite well approximated by the following correlation: St*Pr**0.4 = 0.0295*REx**-0.2. For REx=2.1E6 these correlations yield Cf=3.17E-3 and St=1.84E-3, while the present PHOENICS predictions yield Cf=3.21E-3 and St=1.97E-3. The sensitivity of the solution to variations of the cross- stream grid-size and distribution and also to forward step size DZW1 should be assessed. ENDDIS PHOTON USE p parphi 1.0 1.0 0.2 msg FLAT-PLATE TURBULENT BOUNDARY LAYER ('k-e' model) msg set ref vec 75 msg Pressure contours & axial velocity vectors: gr ou x 1 con p1 x 1 fi;.01;vec x 1 msg msg Pressto continue pause con off;vec off;red msg Axial velocity contours: con wcrt x 1 fi;.01 msg msg Press to continue pause con off;red msg Temperature distribution: con temp x 1 fi;.01 msg - msg Press to continue pause con off;red msg Distribution of turbulent kinetic energy (k): con ke x 1 fi;.01 msg msg Press to continue pause con off;red msg Eddy-viscosity distribution: con enut x 1 fi;.01 msg msg Press e to END enduse ************************************************************ Group 1. Run Title and Number ************************************************************ ************************************************************ TEXT(Boundary Layer K-E Turbulen Model ) ************************************************************ ************************************************************ IRUNN = 1 ;LIBREF = 191 ************************************************************ Group 2. Time dependence STEADY = T ************************************************************ Group 3. X-Direction Grid Spacing CARTES = T NX = 1 XULAST =1. XFRAC(1)=1. ************************************************************ Group 4. Y-Direction Grid Spacing NY = 22 YVLAST =0.0115 AZYV =0.85 ;AZRI =0. ;AZAL =0. YFRAC(1)=0.05 ;YFRAC(3)=0.074 YFRAC(5)=0.145 ;YFRAC(7)=0.229 YFRAC(9)=0.322 ;YFRAC(11)=0.423 YFRAC(13)=0.53 ;YFRAC(15)=0.641 YFRAC(17)=0.757 ;YFRAC(19)=0.877 YFRAC(21)=0.969 ************************************************************ Group 5. Z-Direction Grid Spacing PARAB = T NZ = 100 ZWADD =0.487 ZWLAST =1. AZDZ = GRND2 ZFRAC(1)=1. ************************************************************ Group 6. Body-Fitted Coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd ONEPHS = T NAME(1)=P1 ;NAME(5)=V1 NAME(7)=W1 ;NAME(12)=KE NAME(13)=EP ;NAME(14)=TEMP NAME(149)=LEN1 ;NAME(150)=ENUT * Y in SOLUTN argument list denotes: * 1-stored 2-solved 3-whole-field * 4-point-by-point 5-explicit 6-harmonic averaging SOLUTN(P1,Y,Y,N,N,N,Y) SOLUTN(V1,Y,Y,N,N,N,Y) SOLUTN(W1,Y,Y,N,N,N,Y) SOLUTN(KE,Y,Y,N,N,N,N) SOLUTN(EP,Y,Y,N,N,N,N) SOLUTN(TEMP,Y,Y,N,N,N,Y) SOLUTN(LEN1,Y,N,N,N,N,Y) SOLUTN(ENUT,Y,N,N,N,N,Y) VIST = 150 LEN1 = 149 ************************************************************ Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS(P1,Y,Y,Y,N,Y,Y) TERMS(V1,Y,Y,Y,Y,Y,Y) TERMS(W1,Y,Y,Y,Y,Y,Y) TERMS(KE,N,Y,Y,Y,Y,N) TERMS(EP,N,Y,Y,Y,Y,N) TERMS(TEMP,N,Y,Y,Y,Y,Y) DIFCUT =0. ;ZDIFAC =1. GALA = F ;ADDDIF = F NEWENT = T ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1 ************************************************************ Group 9. Properties used if PRPS is not stored, and where PRPS = -1.0 if it is! RHO1 =1. ;TMP1 =0. ;EL1 = GRND4 TSURR =0. ;TEMP0 =10. ;PRESS0 =0. DVO1DT =0. ;DRH1DP =0. EMISS =0. ;SCATT =0. RADIA =0. ;RADIB =0. EL1A =0. ;EL1B =0. ;EL1C =0. ENUL =1.5E-05 ;ENUT = GRND3 ENUTA =0. ;ENUTB =0. ;ENUTC =0. IENUTA = 0 PRNDTL(V1)=1. ;PRNDTL(W1)=1. PRNDTL(KE)=1. ;PRNDTL(EP)=1. PRNDTL(TEMP)=0.7 PRT(V1)=1. ;PRT(W1)=1. PRT(KE)=1. ;PRT(EP)=1.314 PRT(TEMP)=0.86 CP1 =1. ;CP2 =1. ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initial field variables (PHIs) FIINIT(P1)=1.0E-10 ;FIINIT(V1)=1.0E-10 FIINIT(W1)=33. ;FIINIT(KE)=10.889999 FIINIT(EP)=3124.956299 ;FIINIT(TEMP)=5. FIINIT(LEN1)=1.0E-10 ;FIINIT(ENUT)=1.0E-10 No PATCHes yet used for this Group INIADD = F FSWEEP = 1 NAMFI =CHAM ************************************************************ Group 12. Patchwise adjustment of terms Patches for this group are printed with those for Group 13. Their names begin either with GP12 or & ************************************************************ Group 13. Boundary & Special Sources PATCH(WFUN ,SWALL , 1, 1, 1, 1, 1, 100, 1, 1) COVAL(WFUN ,W1 , GRND2 ,0. ) COVAL(WFUN ,KE , GRND2 , GRND2 ) COVAL(WFUN ,EP , GRND2 , GRND2 ) COVAL(WFUN ,TEMP, GRND2 ,10. ) PATCH(FREE ,NORTH , 1, 1, 22, 22, 1, 100, 1, 1) COVAL(FREE ,P1 ,1.0E+05 ,0. ) COVAL(FREE ,V1 ,0. ,0. ) COVAL(FREE ,W1 ,0. ,33. ) COVAL(FREE ,KE ,0. ,1.0E-10 ) COVAL(FREE ,EP ,0. ,1.0E-10 ) COVAL(FREE ,TEMP,0. ,5. ) PATCH(PROF ,LOW , 1, 1, 1, 22, 1, 1, 1, 1) COVAL(PROF ,P1 , FIXFLU , GRND3 ) COVAL(PROF ,V1 ,0. ,0. ) COVAL(PROF ,W1 ,0. , GRND3 ) COVAL(PROF ,KE ,0. , GRND3 ) COVAL(PROF ,EP ,0. , GRND3 ) COVAL(PROF ,TEMP,0. , GRND3 ) PATCH(KESOURCE,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(KESOURCE,KE , GRND4 , GRND4 ) COVAL(KESOURCE,EP , GRND4 , GRND4 ) XCYCLE = F EGWF = T WALLCO = GRND2 ************************************************************ Group 14. Downstream Pressure For PARAB IPARAB = 1 AZPH =0. ;PBAR =0. ************************************************************ Group 15. Terminate Sweeps LSWEEP = 1 ;ISWC1 = 1 LITHYD = 8 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1 SELREF = T RESFAC =1.0E-02 ************************************************************ Group 16. Terminate Iterations LITER(P1)=20 ;LITER(V1)=10 LITER(W1)=10 ;LITER(KE)=20 LITER(EP)=20 ;LITER(TEMP)=20 ENDIT(P1)=1.0E-03 ;ENDIT(V1)=1.0E-03 ENDIT(W1)=1.0E-03 ;ENDIT(KE)=1.0E-03 ENDIT(EP)=1.0E-03 ;ENDIT(TEMP)=1.0E-03 ************************************************************ Group 17. Relaxation RELAX(P1,LINRLX,1.) RELAX(V1,FALSDT,1.) RELAX(W1,FALSDT,1.) RELAX(KE,LINRLX,0.5) RELAX(EP,LINRLX,0.5) RELAX(TEMP,FALSDT,1.0E+09) RELAX(LEN1,LINRLX,1.) RELAX(ENUT,LINRLX,1.) KELIN = 0 OVRRLX =0. EXPERT = F ;NNORSL = F ************************************************************ Group 18. Limits VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06 VARMAX(KE)=1.0E+10 ;VARMIN(KE)=1.0E-10 VARMAX(EP)=1.0E+10 ;VARMIN(EP)=1.0E-10 VARMAX(TEMP)=1.0E+10 ;VARMIN(TEMP)=-1.0E+10 VARMAX(LEN1)=1.0E+10 ;VARMIN(LEN1)=-1.0E+10 VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10 ************************************************************ Group 19. Data transmitted to GROUND DWDY = T GENK = T PARSOL = F DZW1 =0.3 ISG62 = 1 PROFA =3.381E-03 ;PROFB =9.923E-03 PROFC =0.2345 ;PROFD =33. SPEDAT(SET,GXMONI,PLOTALL,L,T) ************************************************************ Group 20. Preliminary Printout ************************************************************ Group 21. Print-out of Variables INIFLD = F ;SUBWGR = F * Y in OUTPUT argument list denotes: * 1-field 2-correction-eq. monitor 3-selective dumping * 4-whole-field residual 5-spot-value table 6-residual table OUTPUT(P1,Y,N,Y,Y,Y,Y) OUTPUT(V1,Y,N,Y,Y,Y,Y) OUTPUT(W1,Y,N,Y,Y,Y,Y) OUTPUT(KE,Y,Y,Y,Y,Y,Y) OUTPUT(EP,Y,Y,Y,Y,Y,Y) OUTPUT(TEMP,Y,N,Y,Y,Y,Y) OUTPUT(LEN1,Y,N,Y,N,N,N) OUTPUT(ENUT,Y,N,Y,N,N,N) ************************************************************ Group 22. Monitor Print-Out IXMON = 1 ;IYMON = 3 ;IZMON = 1 NPRMON = 4 ;NPRMNT = 1 ;TSTSWP = -1 UWATCH = T ;USTEER = T HIGHLO = F ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ;NUMCLS = 5 NYPRIN = 2 ;IYPRF = 1 ;IYPRL = 10000 NZPRIN = 100 ;IZPRF = 1 ;IZPRL = 10000 IPLTF = 1 ;IPLTL = 8 ;NPLT = 1 ISWPRF = 1 ;ISWPRL = 100000 ITABL = 3 ;IPROF = 1 ABSIZ =0.5 ;ORSIZ =0.4 NTZPRF = 1 ;NCOLPF = 50 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20 PATCH(IZEQNZ ,PROFIL, 1, 1, 1, 22, 100, 100, 1, 1) PLOT(IZEQNZ ,W1 ,0. ,0. ) PLOT(IZEQNZ ,KE ,0. ,0. ) PLOT(IZEQNZ ,TEMP,0. ,0. ) PLOT(IZEQNZ ,LEN1,0. ,0. ) ************************************************************ Group 24. Dumps For Restarts SAVE = T ;NOWIPE = F NSAVE =CHAM IDISPA = 1 ;IDISPB = 0 ;IDISPC = 0 STOP