TALK=T;RUN(1,1)
  DISPLAY
  Cases 190,191 and 192 concern steady, incompressible, turbulent
  plane flow along a smooth flat plate with zero pressure gradient.
  The plate is maintained at a constant temperature above that of
  the free stream.

                 Pressure fixed at zero, velocity and temperature
                 take on the prescribed values WFREE and TFREE
  Constant    - - - - - - - - - - - - - - - - - - - - - - - - - - -
  specified
  mass-flux,
  velocity
  and
  temperature _____________________________________________________
  profiles    /////////////////////////////////////////////////////
                    Wall at constant temperature TWALL
           ^
          y|
           |--->
             z

  The calculations are started 0.487 metres downstream of the
  leading edge, corresponding to a length Reynolds number REx of
  1.E6. The initial mean-velocity profile is taken from published
  experimental data, and the initial turbulence-energy profile is
  estimated from the local friction velocity by assuming a
  distribution compatible with that measured in the fully-developed
  boundary layer.

  The calculations are made with 20 grid cells across the jet and
  a forward step size of 30% of the local width of the boundary
  layer. 100 forward steps are taken so that the marching
  integration is terminated at a length Reynolds number of about
  2.1E6.

  In case 190, the Prandtl mixing-length turbulence model is used
  and the mixing-length distribution is prescribed according to the
  Escudier formulae, ie
     Lm=k*y for y/d<<0.09/k, and
     Lm=0.09*d for y/d>0.09.

  Here k is the von Karman's constant and y is the normal
  distance from the wall.

  The turbulent Prandtl number is set equal to 0.9 and the
  molecular Prandtl number to 0.71.

  Experimental data indicate that the local skin friction
  coefficient Cf is fairly well described by the Schultz-Grunow
  correlation, i.e. Cf = 0.37*(LOG10(REx))**-2.58 where
  Cf = 2.*TAUW/(RHOFRE*WFREE**2).

  For gases with Prandtl numbers Pr in excess of 0.5, the local
  Stanton number St is quite well approximated by the following
  correlation:

  St*Pr**0.4 =  0.0295*REx**-0.2.

  For REx=2.1E6 these correlations yield
     Cf=3.17E-3 and St=1.84E-3,
  while the present PHOENICS predictions yield
     Cf=3.21E-3 and St=1.97E-3.

  The sensitivity of the solution to variations of the cross-
  stream grid-size and distribution and also to forward step size
  DZW1 should be assessed.
  ENDDIS
 ************************************************************
  Group 1. Run Title and Number
 ************************************************************
 ************************************************************
 
 TEXT(Boundary Layer Mixing-Length Model      )
 
 ************************************************************
 ************************************************************
 
 IRUNN = 1 ;LIBREF = 0
 ************************************************************
  Group 2. Time dependence
 STEADY = T
 ************************************************************
  Group 3. X-Direction Grid Spacing
 CARTES = T
 NX = 1
 XULAST =1.
 XFRAC(1)=1.
 ************************************************************
  Group 4. Y-Direction Grid Spacing
 NY = 22
 YVLAST =0.0115
 AZYV =0.85 ;AZRI =0. ;AZAL =0.
 YFRAC(1)=0.05 ;YFRAC(3)=0.074
 YFRAC(5)=0.145 ;YFRAC(7)=0.229
 YFRAC(9)=0.322 ;YFRAC(11)=0.423
 YFRAC(13)=0.53 ;YFRAC(15)=0.641
 YFRAC(17)=0.757 ;YFRAC(19)=0.877
 YFRAC(21)=0.969
 ************************************************************
  Group 5. Z-Direction Grid Spacing
 PARAB = T
 NZ = 100
 ZWADD =0.487
 ZWLAST =1.
 AZDZ = GRND2
 ZFRAC(1)=1.
 ************************************************************
  Group 6. Body-Fitted Coordinates
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
 ONEPHS = T
 NAME(1)=P1 ;NAME(5)=V1
 NAME(7)=W1 ;NAME(14)=TEMP
 NAME(149)=LEN1 ;NAME(150)=ENUT
    * Y in SOLUTN argument list denotes:
    * 1-stored 2-solved 3-whole-field
    * 4-point-by-point 5-explicit 6-harmonic averaging 
 SOLUTN(P1,Y,Y,N,N,N,Y)
 SOLUTN(V1,Y,Y,N,N,N,Y)
 SOLUTN(W1,Y,Y,N,N,N,Y)
 SOLUTN(TEMP,Y,Y,N,N,N,Y)
 SOLUTN(LEN1,Y,N,N,N,N,Y)
 SOLUTN(ENUT,Y,N,N,N,N,Y)
 VIST = 150
 LEN1 = 149
 ************************************************************
  Group 8. Terms & Devices
    * Y in TERMS argument list denotes:
    * 1-built-in source 2-convection 3-diffusion 4-transient
    * 5-first phase variable 6-interphase transport         
 TERMS(P1,Y,Y,Y,N,Y,Y)
 TERMS(V1,Y,Y,Y,Y,Y,Y)
 TERMS(W1,Y,Y,Y,Y,Y,Y)
 TERMS(TEMP,N,Y,Y,Y,Y,Y)
 DIFCUT =0. ;ZDIFAC =1.
 GALA = F ;ADDDIF = F
 NEWENT = T
 ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1
 ************************************************************
  Group 9. Properties used if PRPS is not
  stored, and where PRPS = -1.0 if it is!
 RHO1 =1. ;TMP1 =0. ;EL1 = GRND7
 TSURR =0. ;TEMP0 =10. ;PRESS0 =0.
 DVO1DT =0. ;DRH1DP =0.
 EMISS =0. ;SCATT =0.
 RADIA =0. ;RADIB =0.
 EL1A =0. ;EL1B =0.41 ;EL1C =5.0E-03
 EL1D =33. ;EL1E =0.
 ENUL =1.5E-05 ;ENUT = GRND2
 ENUTA =0. ;ENUTB =0. ;ENUTC =0.
 IENUTA = 0
 PRNDTL(V1)=1. ;PRNDTL(W1)=1.
 PRNDTL(TEMP)=0.7
 PRT(V1)=1. ;PRT(W1)=1.
 PRT(TEMP)=0.86
 CP1 =1. ;CP2 =1.
 ************************************************************
  Group 10.Inter-Phase Transfer Processes
 ************************************************************
  Group 11.Initial field variables (PHIs)
 FIINIT(P1)=1.0E-10 ;FIINIT(V1)=1.0E-10
 FIINIT(W1)=33. ;FIINIT(TEMP)=5.
 FIINIT(LEN1)=1.0E-10 ;FIINIT(ENUT)=1.0E-10
   No PATCHes yet used for this Group
 INIADD = F
 FSWEEP = 1
 NAMFI =CHAM
 ************************************************************
  Group 12. Patchwise adjustment of terms
  Patches for this group are printed with those
  for Group 13.
  Their names begin either with GP12 or &
 ************************************************************
  Group 13. Boundary & Special Sources
 
 PATCH(WFUN ,SWALL , 1, 1, 1, 1, 1, 100, 1, 1)
 COVAL(WFUN ,W1 , GRND2 ,0. )
 COVAL(WFUN ,TEMP, GRND2 ,10. )
 
 PATCH(FREE ,NORTH , 1, 1, 22, 22, 1, 100, 1, 1)
 COVAL(FREE ,P1 ,1.0E+05 ,0. )
 COVAL(FREE ,V1 ,0. ,0. )
 COVAL(FREE ,W1 ,0. ,33. )
 COVAL(FREE ,TEMP,0. ,5. )
 
 PATCH(PROF ,LOW , 1, 1, 1, 22, 1, 1, 1, 1)
 COVAL(PROF ,P1 , FIXFLU , GRND3 )
 COVAL(PROF ,V1 ,0. ,0. )
 COVAL(PROF ,W1 ,0. , GRND3 )
 COVAL(PROF ,TEMP,0. , GRND3 )
 XCYCLE = F
 EGWF = T
 WALLCO = GRND2
 ************************************************************
  Group 14. Downstream Pressure For PARAB
 IPARAB = 1
 AZPH =0. ;PBAR =0.
 ************************************************************
  Group 15. Terminate Sweeps
 LSWEEP = 1 ;ISWC1 = 1
 LITHYD = 8 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1
 SELREF = T
 RESFAC =1.0E-05
 ************************************************************
  Group 16. Terminate Iterations
 LITER(P1)=20 ;LITER(V1)=10
 LITER(W1)=10 ;LITER(TEMP)=20
 ENDIT(P1)=1.0E-03 ;ENDIT(V1)=1.0E-03
 ENDIT(W1)=1.0E-03 ;ENDIT(TEMP)=1.0E-03
 ************************************************************
  Group 17. Relaxation
 RELAX(P1,LINRLX,1.)
 RELAX(V1,FALSDT,1.)
 RELAX(W1,FALSDT,1.)
 RELAX(TEMP,FALSDT,1.0E+09)
 RELAX(LEN1,LINRLX,1.)
 RELAX(ENUT,LINRLX,1.)
 OVRRLX =0.
 EXPERT = F ;NNORSL = F
 ************************************************************
  Group 18. Limits
 VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10
 VARMAX(V1)=1.0E+06 ;VARMIN(V1)=-1.0E+06
 VARMAX(W1)=1.0E+06 ;VARMIN(W1)=-1.0E+06
 VARMAX(TEMP)=1.0E+10 ;VARMIN(TEMP)=-1.0E+10
 VARMAX(LEN1)=1.0E+10 ;VARMIN(LEN1)=-1.0E+10
 VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10
 ************************************************************
  Group 19. Data transmitted to GROUND
 DWDY = T
 PARSOL = F
 DZW1 =0.3
 ISG62 = 1
 PROFA =3.381E-03 ;PROFB =9.923E-03
 PROFC =0.2345 ;PROFD =33.
 SPEDAT(SET,GXMONI,PLOTALL,L,T)
 ************************************************************
  Group 20. Preliminary Printout
 ************************************************************
  Group 21. Print-out of Variables
 INIFLD = F ;SUBWGR = F
    * Y in OUTPUT argument list denotes:
    * 1-field 2-correction-eq. monitor 3-selective dumping      
    * 4-whole-field residual 5-spot-value table 6-residual table
 OUTPUT(P1,Y,N,Y,Y,Y,Y)
 OUTPUT(V1,Y,N,Y,Y,Y,Y)
 OUTPUT(W1,Y,N,Y,Y,Y,Y)
 OUTPUT(TEMP,Y,N,Y,Y,Y,Y)
 OUTPUT(LEN1,Y,N,Y,N,N,N)
 OUTPUT(ENUT,Y,N,Y,N,N,N)
 ************************************************************
  Group 22. Monitor Print-Out
 IXMON = 1 ;IYMON = 3 ;IZMON = 1
 NPRMON = 4 ;NPRMNT = 1 ;TSTSWP = 4
 UWATCH = T ;USTEER = T
 HIGHLO = F
 ************************************************************
  Group 23.Field Print-Out & Plot Control
 NPRINT = 100000 ;NUMCLS = 5
 NYPRIN = 2 ;IYPRF = 1 ;IYPRL = 10000
 NZPRIN = 100 ;IZPRF = 1 ;IZPRL = 10000
 IPLTF = 1 ;IPLTL = 8 ;NPLT = 1
 ISWPRF = 1 ;ISWPRL = 100000
 ITABL = 3 ;IPROF = 1
 ABSIZ =0.5 ;ORSIZ =0.4
 NTZPRF = 1 ;NCOLPF = 50
 ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20
 
 PATCH(IZEQNZ ,PROFIL, 1, 1, 1, 22, 100, 100, 1, 1)
 PLOT(IZEQNZ ,W1 ,0. ,0. )
 PLOT(IZEQNZ ,TEMP,0. ,0. )
 PLOT(IZEQNZ ,LEN1,0. ,0. )
 ************************************************************
  Group 24. Dumps For Restarts
 SAVE = T ;NOWIPE = F
 NSAVE =CHAM
STOP