PHOTON USE AUTOPLOT file phi 5 cl msg 2D U1 CORIOLIS/DIFFUSION TEST:RINNER=0 msg Velocity (U1) profile msg Green line --- PHOENICS solution msg crosses --- analytical solution da 1 u1 x 5;da 1 uana x 5 col9 1;blb4 2 scale x 1 2;redraw msg pressto end pause end END_USE TEXT(2D U1 Coriolis/Diffusion Test:Rinner=0 DISPLAY The case considered is the same as case 826, except that RINNER=0 with the inner cylinder represented through porosities. Therefore, the case considered is 1d radial laminar flow of a swirling fluid between two porous coaxial cylinders of radius RADI and RADO, the outer one of which is rotating with an angular velocity of OMEGO and the inner one with angular velocity OMEGI. This case provides, for NX > 1 and RINNER=0, a test of the U1 equation for: radial convection and diffusion; cyclic boundary conditions; wall friction; and coriolis forces. The analyical solution for the tangential velocity is: U=A/R+B*R**(1.+REYM) where the Reynolds number REYM=VIN*RADI/ENUL and the constants A and B are given by: B=(OMEGI*RADI**2-OMEGO*RADO**2)/(RADI**(2.+REYM)-RADO**(2.+REYM) and A=OMEGI*RADI**2-B*RADI**(2.+REYM). ENDDIS REAL(GRADI,GRADO,OMEGI,GAP,ALFA,BETA,AA,BB,CC,DD,GR,UA,PI) REAL(GRADI2,QFLOW,REYM,OMEGO,GRRAT,GGAM,FLOWIN,VIN);INTEGER(JJM1) ** REYM = VIN*GRADI/ENUL i.e. Reynolds number ** BETA = GRADI/GRADO ALFA = OMEGO/OMEGI REYM=40.0;ALFA=2.0;BETA=0.5;PI=3.14159265 GRADI=1.0;GRADO=GRADI/BETA;OMEGI=10.*PI;OMEGO=ALFA*OMEGI GAP=GRADO-GRADI GROUP 3. X-direction grid specification CARTES=F;XULAST=1.0;NX=10 GRDPWR(X,NX,XULAST,1.0) GROUP 4. Y-direction grid specification NREGY=2;IREGY=1;GRDPWR(Y,2,GRADI,1.0) IREGY=2;GRDPWR(Y,20,GAP,0.7) GROUP 6. Body-fitted coordinates or grid distortion XCYCLE=T GROUP 7. Variables stored, solved & named SOLVE(P1,V1,U1);STORE(UANA) GROUP 9. Properties of the medium (or media) RHO1=1.0;ENUL=1./RHO1;QFLOW=REYM*ENUL VIN=QFLOW/GRADI;FLOWIN=RHO1*VIN GROUP 11. Initialization of variable or porosity fields CONPOR(BLK1,0.0,CELL,1,NX,1,2,1,NZ) IURINI=-1;FIINIT(U1)=OMEGI ** compute analytical solutions GGAM=1.+REYM;CC=GGAM+1.;GRADI2=GRADI*GRADI BB=(OMEGI*GRADI2-OMEGO*GRADO*GRADO)/(GRADI**CC-GRADO**CC) AA=OMEGI*GRADI2-BB*GRADI**CC DO JJ=1,NY +PATCH(IN:JJ:,INIVAL,1,NX,JJ,JJ,1,NZ,1,1) +GR=0.5*YFRAC(JJ) IF(JJ.NE.1) THEN +JJM1=JJ-1 +GR=YFRAC(JJM1)+0.5*(YFRAC(JJ)-YFRAC(JJM1)) ENDIF +GR=GR*GRADO;UA=AA/GR+BB*GR**GGAM +INIT(IN:JJ:,UANA,ZERO,UA) ENDDO GROUP 13. Boundary conditions and special sources PATCH(INLET,SOUTH,1,NX,3,3,1,NZ,1,1) COVAL(INLET,P1,FIXFLU,FLOWIN);COVAL(INLET,V1,ONLYMS,VIN) COVAL(INLET,U1,ONLYMS,OMEGI*GRADI) PATCH(OUTLET,NORTH,1,NX,NY,NY,1,NZ,1,1) COVAL(OUTLET,P1,FIXP,0.0) PATCH(INNER,SWALL,1,NX,3,3,1,NZ,1,1) COVAL(INNER,U1,1.0,OMEGI*GRADI) PATCH(OUTER,NWALL,1,NX,NY,NY,1,NZ,1,1) COVAL(OUTER,U1,1.0,OMEGO*GRADO) GROUPS 14 to 24 LSWEEP=40;IYMON=10;NYPRIN=1;NPRINT=LSWEEP;NPLT=2 IPLTL=LSWEEP;TSTSWP=12345;LITHYD=2