PHOTON USE
   AUTOPLOT
   file
   phi 5
 
   cl
   msg 2D U1 CORIOLIS/DIFFUSION TEST:RINNER=0
   msg Velocity (U1) profile
   msg Green line --- PHOENICS solution
   msg crosses ---   analytical solution
   da 1 u1 x 5;da 1 uana x 5
   col9 1;blb4 2
   scale x 1 2;redraw
 
   msg press  to end
   pause
   end
   END_USE
 
TEXT(2D U1 Coriolis/Diffusion Test:Rinner=0
  DISPLAY
  
  The case considered is the same as case 826, except that RINNER=0
  with the inner cylinder represented through porosities. Therefore,
  the case considered is 1d radial laminar flow of a swirling fluid
  between two porous coaxial cylinders of radius RADI and RADO, the
  outer one of which is rotating with an angular velocity of OMEGO
  and the inner one with angular velocity OMEGI. This case provides,
  for NX > 1 and RINNER=0, a test of the U1 equation for: radial
  convection and diffusion; cyclic boundary conditions; wall
  friction; and coriolis forces. The analyical solution for the
  tangential velocity is: U=A/R+B*R**(1.+REYM) where the Reynolds
  number REYM=VIN*RADI/ENUL and the constants A and B are given by:
  B=(OMEGI*RADI**2-OMEGO*RADO**2)/(RADI**(2.+REYM)-RADO**(2.+REYM)
  and A=OMEGI*RADI**2-B*RADI**(2.+REYM).
 
  ENDDIS
  
REAL(GRADI,GRADO,OMEGI,GAP,ALFA,BETA,AA,BB,CC,DD,GR,UA,PI)
REAL(GRADI2,QFLOW,REYM,OMEGO,GRRAT,GGAM,FLOWIN,VIN);INTEGER(JJM1)
  ** REYM = VIN*GRADI/ENUL i.e. Reynolds number
  ** BETA = GRADI/GRADO  ALFA = OMEGO/OMEGI
REYM=40.0;ALFA=2.0;BETA=0.5;PI=3.14159265
GRADI=1.0;GRADO=GRADI/BETA;OMEGI=10.*PI;OMEGO=ALFA*OMEGI
GAP=GRADO-GRADI
    GROUP 3. X-direction grid specification
CARTES=F;XULAST=1.0;NX=10
GRDPWR(X,NX,XULAST,1.0)
    GROUP 4. Y-direction grid specification
NREGY=2;IREGY=1;GRDPWR(Y,2,GRADI,1.0)
IREGY=2;GRDPWR(Y,20,GAP,0.7)
    GROUP 6. Body-fitted coordinates or grid distortion
XCYCLE=T
    GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,U1);STORE(UANA)
    GROUP 9. Properties of the medium (or media)
RHO1=1.0;ENUL=1./RHO1;QFLOW=REYM*ENUL
VIN=QFLOW/GRADI;FLOWIN=RHO1*VIN
    GROUP 11. Initialization of variable or porosity fields
CONPOR(BLK1,0.0,CELL,1,NX,1,2,1,NZ)
IURINI=-1;FIINIT(U1)=OMEGI
  ** compute analytical solutions
GGAM=1.+REYM;CC=GGAM+1.;GRADI2=GRADI*GRADI
BB=(OMEGI*GRADI2-OMEGO*GRADO*GRADO)/(GRADI**CC-GRADO**CC)
AA=OMEGI*GRADI2-BB*GRADI**CC
DO JJ=1,NY
+PATCH(IN:JJ:,INIVAL,1,NX,JJ,JJ,1,NZ,1,1)
+GR=0.5*YFRAC(JJ)
IF(JJ.NE.1) THEN
+JJM1=JJ-1
+GR=YFRAC(JJM1)+0.5*(YFRAC(JJ)-YFRAC(JJM1))
ENDIF
+GR=GR*GRADO;UA=AA/GR+BB*GR**GGAM
+INIT(IN:JJ:,UANA,ZERO,UA)
ENDDO
    GROUP 13. Boundary conditions and special sources
PATCH(INLET,SOUTH,1,NX,3,3,1,NZ,1,1)
COVAL(INLET,P1,FIXFLU,FLOWIN);COVAL(INLET,V1,ONLYMS,VIN)
COVAL(INLET,U1,ONLYMS,OMEGI*GRADI)
PATCH(OUTLET,NORTH,1,NX,NY,NY,1,NZ,1,1)
COVAL(OUTLET,P1,FIXP,0.0)
PATCH(INNER,SWALL,1,NX,3,3,1,NZ,1,1)
COVAL(INNER,U1,1.0,OMEGI*GRADI)
PATCH(OUTER,NWALL,1,NX,NY,NY,1,NZ,1,1)
COVAL(OUTER,U1,1.0,OMEGO*GRADO)
    GROUPS 14 to 24
LSWEEP=40;IYMON=10;NYPRIN=1;NPRINT=LSWEEP;NPLT=2
IPLTL=LSWEEP;TSTSWP=12345;LITHYD=2