PHOTON USE AUTOPLOT file phi 5 cl msg U1 DIFFUSION IN AN ANNULUS: OMEGI = 0. msg Velocity (U1) profile msg Green line --- PHOENICS solution msg crosses --- analytical solution da 1 u1;da 1 uana col9 1;blb4 2 msg pressto end pause end END_USE The case considered is one-dimensional tangential laminar flow of an incompressible fluid between two coaxial cylinders of radius RADI and RADO, the outer one of which is rotating with an angular velocity of OMEGO. This case provides a test of the radial diffusion terms in the U1 equation and the wall boundary treatment with RINNER=0. The analyical solution for the tangential velocity is U1=OMEGO*GRADO**2*(GRADI**2-GR**2)/[GR*(GRADI**2-GRADO**2)] where GR is the radius. TEXT(1D U1 Diffusion In An Annulus;Omegi=0. REAL(GRADI,GRADO,OMEGO,GAP,BETA,AA,BB,GR,UA,PI) INTEGER(JJM1) ** BETA = GRADI/GRADO BETA=0.5;PI=3.14159265 OMEGO=10*PI;GRADI=0.05;GRADO=GRADI/BETA;GAP=GRADO-GRADI GROUP 3. X-direction grid specification CARTES=F GROUP 4. Y-direction grid specification NY=10;RINNER=GRADI;GRDPWR(Y,NY,GAP,1.0) GROUP 7. Variables stored, solved & named SOLVE(U1);STORE(UANA) GROUP 8. Terms (in differential equations) & devices TERMS(U1,P,N,P,P,P,P) GROUP 9. Properties of the medium (or media) RHO1=1000.0;ENUL=1.E-3/RHO1 GROUP 11. Initialization of variable or porosity fields IURINI=-1;FIINIT(U1)=OMEGO ** compute analytical solutions AA=OMEGO*GRADO*GRADO BB=GRADI*GRADI-GRADO*GRADO DO JJ=1,NY +PATCH(IN:JJ:,INIVAL,1,NX,JJ,JJ,1,NZ,1,1) +GR=0.5*YFRAC(JJ) IF(JJ.NE.1) THEN +JJM1=JJ-1 +GR=YFRAC(JJM1)+0.5*(YFRAC(JJ)-YFRAC(JJM1)) ENDIF +GR=GR*GAP+GRADI +UA=AA*(GRADI*GRADI-GR*GR)/(BB*GR) +INIT(IN:JJ:,UANA,ZERO,UA) ENDDO GROUP 13. Boundary conditions and special sources PATCH(OUTER,NWALL,1,NX,NY,NY,1,NZ,1,1) COVAL(OUTER,U1,1.0,OMEGO*GRADO) PATCH(INNER,SWALL,1,NX,1,1,1,NZ,1,1) COVAL(INNER,U1,1.0,0.0) GROUPS 14 to 24 LSWEEP=10 IYMON=3;NYPRIN=1;NPRINT=LSWEEP;NPLT=1 IPLTL=LSWEEP;TSTSWP=12345