DISPLAY This case illustrates the use of In-Form for creating flow resistances and guide vanes in the lower part of the box. A air enters a box through an aperture in one side near the bottom, and leaves through a similar aperture near the top. Flow resistances and guide vanes in the lower part of the box, which are intended to cause the upward flow in the box to be nearly uniform, are introduced via In-Form source formulae. Their disposition was chosen directly in a zone where the flow changes direction. There are two resistances with different factors. First is located directly before the input. It is intended for prevention the distribution of a inlet flow inside of the box in a horizontal direction. Second in the small area above the input. It is intended for zeroizing of a horizontal velocity component. The guide vanes are located also in the area before the input and is intended for smooth turn of a inlet flow. Interesting changes include: changes to the inlet velocity and use resistances and vanes in different combinations. The Q1 contains PHOTON USE commands. ENDDIS PHOTON USE p;;;; up z;vi y;gr ou y 1;use patgeo msg Velocity vectors vec y 1 sh pause con p1 y 1 fi;.00001 red msg pressure contours ENDUSE ************************************************************ Group 1. Run Title TEXT(Flow straightened by vanes & resistances ************************************************************ GROUP 3. X-direction grid specification GRDPWR(X,20,4.,1.0) GROUP 5. Z-direction grid specification GRDPWR(Z,50,10.,1.0) ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd SOLVE(P1, U1, W1) STORE(VABS) ************************************************************ Group 9. Properties ENUT=1.E-2 ************************************************************ Group 13. Boundary & Special Sources REAL(UIN); UIN=10 ! Inlet velocity mesg(Inlet velocity is :UIN: OK? If not, insert other value readvdu(uin,real,uin) INLET(INLET, WEST, 1, 1, 1, NY, 1, 10, 1, 1) VALUE(INLET, P1, RHO1*UIN) VALUE(INLET, U1, UIN) PATCH(OUTLET, WEST, 1, 1, 1, NY, 45, NZ, 1, 1) COVAL(OUTLET, P1, 1.000E+00, 0.000E+00) INFORM13BEGIN REAL(RES1, RES2) RES1=0.25; RES2=1000 mesg(Do you want to use the resistance before the input? (y/n) readvdu(ans,char,y) if(:ans:.eq.y) then PATCH(RESIST1,VOLUME,1,NX,1,NY,1,10,1,1) (SOURCE of U1 at RESIST1 is -RES1*VABS*U1 with LINE) endif mesg(Do you want to use the resistance above the input? (y/n) readvdu(ans,char,y) if(:ans:.eq.y) then PATCH(RESIST2,VOLUME,1,NX,1,NY,11,11,1,1) (SOURCE of U1 at RESIST2 is -RES2*VABS*U1 with LINE) endif REAL(ANGLE, LIFTCO) ANGLE=0.25; LIFTCO=1.0 mesg(Do you want to use the vanes before the input? (y/n) readvdu(ans,char,y) if(:ans:.eq.y) then PATCH(VANES,VOLUME,1,NX,1,NY,1,10,1,1) (SOURCE of U1 at VANES is LIFTCO*VABS*(-ANGLE*W1-U1) with LINE) (SOURCE of W1 at VANES is LIFTCO*VABS*(ANGLE*U1-W1) with LINE) endif INFORM13END ************************************************************ Group 15. Terminate Sweeps LSWEEP = 200 ************************************************************ Group 17. Relaxation lsg57=t ************************************************************ Group 20. Preliminary Printout DISTIL=T EX(P1)=1.792E+02; EX(U1)=1.712E+00 EX(W1)=4.326E+00; EX(VABS)=5.250E+00 ************************************************************ Group 22. Monitor Print-Out TSTSWP = -1; IXMON=NX/2; IZMON=NZ-1 LIBREF=753 STOP