GROUP 1. Run title and other preliminaries PHOTON USE AUTOPLOT file phi 5 cl msg POWER-LAW-FLUID LAMINAR PIPE FLOW msg Reynolds number = 10 Power index = 0.5 msg Velocity (W1) profile msg Blue line --- PHOENICS solution msg crosses --- analytical solution da 1 w1;da 1 w1a col3 1;blb4 2 msg pressto continue pause msg press to end pause end END_USE TEXT(Power-Law Fluid FD Lam Pipe Flow TITLE DISPLAY The problem concerns the steady fully-developed laminar flow of a power-law pseudo-plastic non-Newtonian fluid. The apparent viscosity of such a fluid is given by: enul = K*[(dw/dy)**(n-1.)]/rho so that enul decreases with increasing shear rate. Here, K is the fluid consistency index and n the flow-behaviour index. Examples of pseudo-plastic fluids include rubber solutions, adhesives, polymer solutions or melts, and biological fluids. ENDDIS For fully-developed flow the analytical solution for the pressure drop is given by: dp/dz = 4.*rho*win**2*[(2+6n)/n]**n/Re/D where D is the pipe diameter, win the mean velocity and Re the power-law Reynolds number, defined by: Re = D**n*win**(2-n)*rho/K The analytical solution for the velocity profile is w = win*(1+3*n)[1-(2r/D)**(1.+1./n)]/(1.+n) The problem is solved by use of the single-slab solver. ** GXPRPS=T activates ENUL coding via the file GXPRPS for which BOOLEAN(GXPRPS);GXPRPS=F REAL(RIN,DIN,WIN,AIN,DPDZ,FLOWIN);RIN=0.1;DIN=2.*RIN WIN=1.0;AIN=RIN*RIN/2. GROUP 2. TRANSIENCE; TIME-STEP SPECIFICATION CARTES=F GROUP 4. Y-direction grid specification NY=20;GRDPWR(Y,NY,RIN,1.0) GROUP 5. Z-direction grid specification ZWLAST=0.1 GROUP 7. Variables stored, solved & named SOLVE(W1);STORE(W1A,VISL) GROUP 8. Terms (in differential equations) & devices TERMS(W1,N,N,P,P,P,P) GROUP 9. Properties of the medium (or media) RHO1=1.0;ENUT=0. REAL(REY,POWER);REY=10.;POWER=0.5 ENULA=WIN**(2.0-POWER)*DIN**POWER/REY;ENULB=POWER ENULA ENULB ** enul = enula*(dwdy)*[0.5*(enulb-1)] ENUL=STRAIN;DWDY=T DPDZ=4.*RHO1*WIN**2/DIN/REY*((2.+6.*POWER)/POWER)**POWER DPDZ REY POWER GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=WIN ** compute analytical solutions REAL(WA,GR,GRAT,POW2);INTEGER(JJM1) POW2=(1.+POWER)/POWER DO JJ=1,NY +PATCH(IN:JJ:,INIVAL,1,NX,JJ,JJ,1,NZ,1,1) +GR=0.5*YFRAC(JJ) IF(JJ.NE.1) THEN +JJM1=JJ-1 +GR=YFRAC(JJM1)+0.5*(YFRAC(JJ)-YFRAC(JJM1)) ENDIF +GR=GR*YVLAST;GRAT=GR/RIN +WA=WIN*(1.+3.*POWER)*(1.-GRAT**POW2)/(1.+POWER) +INIT(IN:JJ:,W1A,ZERO,WA) ENDDO GROUP 13. Boundary conditions and special sources PATCH(WALL,NWALL,1,NX,NY,NY,1,NZ,1,1) COVAL(WALL,W1,1.0,0.0) ** activate fully-developed-flow pressure adjustment FDFSOL=T;USOURC=T;FLOWIN=RHO1*WIN*AIN PATCH(FDFW1DP,VOLUME,1,NX,1,NY,1,NZ,1,1) COVAL(FDFW1DP,W1,FLOWIN,GRND1) GROUP 15. Termination of sweeps LSWEEP=8;LITHYD=10 GROUP 16. Termination of iterations RESREF(W1)=1.E-12*DPDZ*ZWLAST*AIN GROUP 17. Under-relaxation devices REAL(DTF);DTF=100.*(YVLAST/NY)**2/ENULA RELAX(W1,FALSDT,DTF) GROUP 22. Spot-value print-out IYMON=NY;TSTSWP=-1 GROUP 23. Field print-out and plot control NPLT=1;NYPRIN=1;NZPRIN=1 GROUP 24. Dumps for restarts IF(GXPRPS) THEN ;STORE(PRPS);FIINIT(PRPS)=33 ** mat no. rho enul cp kond expan ** 1 air CSG10=Q1 MATFLG=T;NMAT=1 33 1. GRND4 1. 1. 0 0.04472 0.5 ENDIF