GROUP 1. Run title and other preliminaries
TEXT(2DTrans Buoyant Flow Of Melt In A Ladle
TITLE
DISPLAY
The case considered is 2d transient turbulent fluid flow and
heat transfer of liquid steel (melt) in a ladle. This case
has been studied numerically by Chakraborty and Sahai (Metall.
Trans. B, Vol.23B, p135, 1992).
The cylindrical ladle is 3.35m in diameter, and the melt depth
is 4m, and the holding period before release of the melt into
the mold is 20 minutes.
The melt is taken to be stagnant and isothermal at the start
of the holding period. The free surface is presumed flat, and
heat loss rates are prescribed at both walls and the free
surface. Convection currents are set up in the melt due to
buoyancy forces resulting from the cooling of the melt with
time. After about 5 or 10 minutes, it is expected that a
clockwise overall recirculation pattern will be established
within the melt.
ENDDIS
Q=-100000 W/m2
--------------|-------------
| --------> |/
| |/
: ---> |/
Symmetrical | ^ |/
centre | | ^ | |/
line : | | | |--->Q=-12500 W/m2
of | | v | |/
ladle | v |/
: <--- |/
Z ^ | |/
| | <-------- |/
| --------------|-------------
|-------> Y V
Q=-12500 W/m2
PHOTON USE
P
UP Z
VEC X 1 SH
PAU;CL
CON TMP1 X 1 FI;.01
ENDUSE
REAL(CPM,RHORM,TCM);CPM=750.0;RHORM=7000.0;TCM=41.0
GROUP 2. Transience; time-step specification
** Recommend DT=2s but use DT=4s for library purposes
Estimated runtime = 30min on Pentium P200
REAL(TTOTAL,DTIME);TTOTAL=20.*60.;DTIME=4.0
LSTEP=TTOTAL/DTIME
STEADY=F;GRDPWR(T,LSTEP,TTOTAL,1.0)
GROUP 3. X-direction grid specification
CARTES=F;XULAST=0.1
GROUP 4. Y-direction grid specification
YVLAST=1.675
REAL(RADC);RADC=1.675/2.0
NREGY=2
** Chakraborty and Sahai use NY=25
INTEGER(NYRG1,NYRG2)
IREGY=1;NYRG1=5;GRDPWR(Y,NYRG1,RADC, 1.3)
IREGY=2;NYRG2=7;GRDPWR(Y,NYRG2,RADC,-1.3)
GROUP 5. Z-direction grid specification
ZWLAST=4.0
NREGZ=2
** Chakraborty and Sahai use NZ=30
INTEGER(NZRG1,NZRG2)
IREGZ=1;NZRG1=8;GRDPWR(Z,NZRG1,2.0, 1.3)
IREGZ=2;NZRG2=8;GRDPWR(Z,NZRG2,2.0,-1.3)
GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1,H1);STORE(RHO1,TMP1,ENUT)
TURMOD(KEMODL)
SOLUTN(P1,Y,Y,Y,N,N,N);SOLUTN(H1,Y,Y,Y,P,P,N)
SOLUTN(V1,P,P,Y,P,P,N);SOLUTN(W1,P,P,Y,P,P,N)
GROUP 8. Terms (in differential equations) & devices
GROUP 9. Properties of the medium (or media)
ENUL=5.0E-3/RHORM
** Set the temperature as TMP1=TMP1A+TMP1B*H1
i.e. TMP1=To + (H-Ho)/CP1 where Ho=0.0 & To=1580.
TMP1=GRND2;TMP1A=1580.0;TMP1B=1.0/CPM; cp1=cpm
** Set the density as RHO1A+RHO1B*H1
i.e. RHO1=RHOo + 1.4*(Ho-H)/CP1 where RHOo=RHORM
RHO1=GRND1;RHO1A=RHORM;RHO1B=-1.4/CPM
PRNDTL(H1)=ENUL*RHORM*CPM/TCM;PRT(H1)=0.9
CP1=CPM
GROUP 11. Initialization of variable or porosity fields
FIINIT(H1)=0.0;FIINIT(RHO1)=RHORM;FIINIT(TMP1)=1580.0
GROUP 13. Boundary conditions and special sources
** Heat loss flux from TOP surface
PATCH(QTOP,HIGH,1,1,1,NY,NZ,NZ,1,LSTEP)
COVAL(QTOP,H1,FIXFLU,-100000.0)
** BOTTOM wall
WALL(BOTTOM,LOW,1,1,1,NY,1,1,1,LSTEP)
** Heat loss flux through BOTTOM wall
PATCH(QBOT,LOW,1,1,1,NY,1,1,1,LSTEP)
COVAL(QBOT,H1,FIXFLU,-12500.0)
** Side wall
WALL(SIDEW,NORTH,1,1,NY,NY,1,NZ,1,LSTEP)
** Heat loss fluxes through SIDE wall
PATCH(QSIDE,NORTH,1,1,NY,NY,1 ,NZ,1,LSTEP)
COVAL(QSIDE,H1,FIXFLU,-12500.0)
** Buoyancy
PATCH(BUOYANCY,PHASEM,1,1,1,NY,1,NZ,1,LSTEP)
COVAL(BUOYANCY,W1,FIXFLU,GRND2)
BUOYA=0.0;BUOYB=0.0;BUOYC=-9.81;BUOYD=RHORM
GROUP 15. Termination of sweeps
LSWEEP=30
SELREF=F;RESREF(P1)=1.0E-12
LITER(P1)=100;LITER(H1)=100;ENDIT(P1)=GRND1
GROUP 17. Under-relaxation devices
GROUP 19.
** Dump PHI files every 5 minutes
IDISPA = 75;CSG1 = G
SPEDAT(SET,GXMONI,TRANSIENT,L,F)
GROUP 20. Preliminary print-out
GROUP 21. Print-out of variables
OUTPUT(TMP1,Y,Y,Y,Y,Y,Y)
NTPRIN=75
GROUP 22. Spot-value print-out
IXMON=1;IYMON=NY-1;IZMON=NZ-1
NPRMON=10000;TSTSWP=-1;ITABL=3;NPLT=5
GROUP 23. Field print-out and plot control
DISTIL=T
EX(P1 )=3.135E+02;EX(W1 )=2.190E-02;EX(H1 )=7.389E+03
EX(TMP1)=1.570E+03;EX(RHO1)=7.014E+03