GROUP 1. Run title and other preliminaries TEXT(2DTrans Buoyant Flow Of Melt In A Ladle TITLE DISPLAY The case considered is 2d transient turbulent fluid flow and heat transfer of liquid steel (melt) in a ladle. This case has been studied numerically by Chakraborty and Sahai (Metall. Trans. B, Vol.23B, p135, 1992). The cylindrical ladle is 3.35m in diameter, and the melt depth is 4m, and the holding period before release of the melt into the mold is 20 minutes. The melt is taken to be stagnant and isothermal at the start of the holding period. The free surface is presumed flat, and heat loss rates are prescribed at both walls and the free surface. Convection currents are set up in the melt due to buoyancy forces resulting from the cooling of the melt with time. After about 5 or 10 minutes, it is expected that a clockwise overall recirculation pattern will be established within the melt. ENDDIS Q=-100000 W/m2 --------------|------------- | --------> |/ | |/ : ---> |/ Symmetrical | ^ |/ centre | | ^ | |/ line : | | | |--->Q=-12500 W/m2 of | | v | |/ ladle | v |/ : <--- |/ Z ^ | |/ | | <-------- |/ | --------------|------------- |-------> Y V Q=-12500 W/m2 PHOTON USE P UP Z VEC X 1 SH PAU;CL CON TMP1 X 1 FI;.01 ENDUSE REAL(CPM,RHORM,TCM);CPM=750.0;RHORM=7000.0;TCM=41.0 GROUP 2. Transience; time-step specification ** Recommend DT=2s but use DT=4s for library purposes Estimated runtime = 30min on Pentium P200 REAL(TTOTAL,DTIME);TTOTAL=20.*60.;DTIME=4.0 LSTEP=TTOTAL/DTIME STEADY=F;GRDPWR(T,LSTEP,TTOTAL,1.0) GROUP 3. X-direction grid specification CARTES=F;XULAST=0.1 GROUP 4. Y-direction grid specification YVLAST=1.675 REAL(RADC);RADC=1.675/2.0 NREGY=2 ** Chakraborty and Sahai use NY=25 INTEGER(NYRG1,NYRG2) IREGY=1;NYRG1=5;GRDPWR(Y,NYRG1,RADC, 1.3) IREGY=2;NYRG2=7;GRDPWR(Y,NYRG2,RADC,-1.3) GROUP 5. Z-direction grid specification ZWLAST=4.0 NREGZ=2 ** Chakraborty and Sahai use NZ=30 INTEGER(NZRG1,NZRG2) IREGZ=1;NZRG1=8;GRDPWR(Z,NZRG1,2.0, 1.3) IREGZ=2;NZRG2=8;GRDPWR(Z,NZRG2,2.0,-1.3) GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,H1);STORE(RHO1,TMP1,ENUT) TURMOD(KEMODL) SOLUTN(P1,Y,Y,Y,N,N,N);SOLUTN(H1,Y,Y,Y,P,P,N) SOLUTN(V1,P,P,Y,P,P,N);SOLUTN(W1,P,P,Y,P,P,N) GROUP 8. Terms (in differential equations) & devices GROUP 9. Properties of the medium (or media) ENUL=5.0E-3/RHORM ** Set the temperature as TMP1=TMP1A+TMP1B*H1 i.e. TMP1=To + (H-Ho)/CP1 where Ho=0.0 & To=1580. TMP1=GRND2;TMP1A=1580.0;TMP1B=1.0/CPM; cp1=cpm ** Set the density as RHO1A+RHO1B*H1 i.e. RHO1=RHOo + 1.4*(Ho-H)/CP1 where RHOo=RHORM RHO1=GRND1;RHO1A=RHORM;RHO1B=-1.4/CPM PRNDTL(H1)=ENUL*RHORM*CPM/TCM;PRT(H1)=0.9 CP1=CPM GROUP 11. Initialization of variable or porosity fields FIINIT(H1)=0.0;FIINIT(RHO1)=RHORM;FIINIT(TMP1)=1580.0 GROUP 13. Boundary conditions and special sources ** Heat loss flux from TOP surface PATCH(QTOP,HIGH,1,1,1,NY,NZ,NZ,1,LSTEP) COVAL(QTOP,H1,FIXFLU,-100000.0) ** BOTTOM wall WALL(BOTTOM,LOW,1,1,1,NY,1,1,1,LSTEP) ** Heat loss flux through BOTTOM wall PATCH(QBOT,LOW,1,1,1,NY,1,1,1,LSTEP) COVAL(QBOT,H1,FIXFLU,-12500.0) ** Side wall WALL(SIDEW,NORTH,1,1,NY,NY,1,NZ,1,LSTEP) ** Heat loss fluxes through SIDE wall PATCH(QSIDE,NORTH,1,1,NY,NY,1 ,NZ,1,LSTEP) COVAL(QSIDE,H1,FIXFLU,-12500.0) ** Buoyancy PATCH(BUOYANCY,PHASEM,1,1,1,NY,1,NZ,1,LSTEP) COVAL(BUOYANCY,W1,FIXFLU,GRND2) BUOYA=0.0;BUOYB=0.0;BUOYC=-9.81;BUOYD=RHORM GROUP 15. Termination of sweeps LSWEEP=30 SELREF=F;RESREF(P1)=1.0E-12 LITER(P1)=100;LITER(H1)=100;ENDIT(P1)=GRND1 GROUP 17. Under-relaxation devices GROUP 19. ** Dump PHI files every 5 minutes IDISPA = 75;CSG1 = G SPEDAT(SET,GXMONI,TRANSIENT,L,F) GROUP 20. Preliminary print-out GROUP 21. Print-out of variables OUTPUT(TMP1,Y,Y,Y,Y,Y,Y) NTPRIN=75 GROUP 22. Spot-value print-out IXMON=1;IYMON=NY-1;IZMON=NZ-1 NPRMON=10000;TSTSWP=-1;ITABL=3;NPLT=5 GROUP 23. Field print-out and plot control DISTIL=T EX(P1 )=3.135E+02;EX(W1 )=2.190E-02;EX(H1 )=7.389E+03 EX(TMP1)=1.570E+03;EX(RHO1)=7.014E+03