PHOTON USE
  p
  p2
  10 1
 
  view x
  norm
  gr ou x 1
  msg   Velocity vectors - time=1 sec
  vec x 1 sh
  msg
  msg Press  to continue
  pause
  vec off;red
  msg        Pressure distribution - time=1 sec
  con p1 x 1 fi;.01
  msg
  msg Press  to continue
  pause
  con off;red
  msg   Temperature distribution - Prandtl number 0.7:
  con h1 x 1 fi;.001
  msg Press  to continue
  pause
  con off;red
  msg   Temperature distribution - Prandtl number 1.0:
  con a x 1 fi;.001
  msg
  msg Press  to continue
  pause
  con off;red
  msg   Temperature distribution - Prandtl number 0.1:
  con b x 1 fi;.001
  msg
  msg Press  to see results after increase in flow rate
  pause
  p
  p4
  10 1
 
 
 
  view x
  norm
  gr ou x 1
  msg   Velocity vectors - time=3 sec
  vec x 1 sh
  msg
  msg Press  to continue
  pause
  vec off;red
  msg        Pressure distribution - time=3 sec
  con p1 x 1 fi;.01
  msg
  msg Press  to continue
  pause
  con off;red
  msg   Temperature distribution - Prandtl number 0.7:
  con h1 x 1 fi;.001
  msg Press  to continue
  pause
  con off;red
  msg   Temperature distribution - Prandtl number 1.0:
  con a x 1 fi;.001
  msg
  msg Press  to continue
  pause
  con off;red
  msg   Temperature distribution - Prandtl number 0.1:
  con b x 1 fi;.001
  msg
  msg Press e to END
  enduse
 
    GROUP 1. Run title and other preliminaries
TEXT(Laminar Flow In Pipe-Transient    
TITLE
mesg(PC486/50 time last reported as appx. 1.5 min
  DISPLAY
  This case examines the transient flow in a pipe resulting from
  an abrupt change in inlet conditions. The  uniform inflow
  is imposed at the inlet, at the start of the calculation.
  The pipe-wall temperature differs from the initial temperature
  of the flow. Three extra variables are treated as temperatures
  with different Prandtl numbers.
 
  The development of the transient flow can be studied through
  changing parameters such as geometry, flow properties and flow
  rate at the inlet.
                              hot pipe wall
                      ////////////////////////////
             inlet   -----------------------------
                  ---->
              uniform inflow                       exit
                  ---->
                  _________________________axis____________
 
  For a grid-independent solution, smaller grid size is needed.
  ENDDIS
 
    GROUP 2. Transience; time-step specification
  ** Activate unsteady term in the solved equations
STEADY=F
IREGT=1; GRDPWR(T,5,0.5,1.0)
 
    GROUP 3. X-direction grid specification
CARTES=F
 
   *  Write objects
RSET(D,PIPE,1.,0.01,0.5,1,0)
RSET(B,PIPEW,0,0.01,0,1.,0,0.5,11,0)
 
    GROUP 4. Y-direction grid specification
IREGY=1; GRDPWR(Y,10,0.01,1.0)
 
    GROUP 5. Z-direction grid specification
IREGZ=1; GRDPWR(Z,10,0.5,1.0)
 
    GROUP 6. Body-fitted coordinates or grid distortion
    GROUP 7. Variables stored, solved & named
  ** Solve for three extra variables, A, B AND C, treated as
     temperatures with different Prandtl numbers.
SOLVE(P1,V1,W1,H1,C1,C2,C3)
NAME(C1)=A; NAME(C2)=B; NAME(C3)=C
 
    GROUP 8. Terms (in differential equations) & devices
    GROUP 9. Properties of the medium (or media)
ENUL=1.E-5;PRNDTL(H1)=0.7
PRNDTL(A)=1.0;PRNDTL(B)=0.1;PRNDTL(C)=10.0
 
    GROUP 13. Boundary conditions and special sources
 
    1. Wall at north boundary
 
WALL (PIPEW,NORTH,#1,#1,#NREGY,#NREGY,#1,#NREGZ,#1,#NREGT)
COVAL(PIPEW,W1,1.0,0.0);COVAL(PIPEW,H1,1./PRNDTL(H1),1.0)
COVAL(PIPEW,A,1.0,1.0);COVAL(PIPEW,B,10.0,1.0)
COVAL(PIPEW,C,0.1,1.0)
 
    2. Inlet-- uniform flow
 
INLET(UNIFORM,LOW,#1,#1,#1,#NREGY,#1,#1,#1,#NREGT)
VALUE(UNIFORM,P1,0.1);VALUE(UNIFORM,W1,0.1)
VALUE(UNIFORM,V1,0.0);VALUE(UNIFORM,H1,0.0)
VALUE(UNIFORM,A,0.0);VALUE(UNIFORM,B,0.0)
VALUE(UNIFORM,C,0.0)
 
    2. Outlet-- fixed pressure
 
PATCH(OUTLET,HIGH,#1,#1,#1,#NREGY,#NREGZ,#NREGZ,#1,#NREGT)
COVAL(OUTLET,P1,FIXVAL,0.0)
COVAL(OUTLET,V1,ONLYMS,0.0);COVAL(OUTLET,W1,ONLYMS,0.0)
 
    GROUP 15. Termination of sweeps
LSWEEP=20
RESREF(P1)=1.E-6;RESREF(V1)=1.E-6
RESREF(H1)=1.E-6;RESREF(W1)=1.E-6
RESREF(A)=1.E-6;RESREF(B)=1.E-6;RESREF(C)=1.E-6
SPEDAT(SET,GXMONI,TRANSIENT,L,F)
    GROUP 22. Spot-value print-out
NPRMON=LSWEEP;IYMON=5
 
    GROUP 22. Spot-value print-out
IYMON=NY/2;IZMON=NZ/2;IPLTL=30
 
    GROUP 23. Field print-out and plot control
NTPRIN=1
NZPRIN=2
PATCH(TIMPLOT1,PROFIL,1,1,1,NY,NZ-1,NZ-1,1,LSTEP)
PLOT(TIMPLOT1,W1,0.0,0.2);PLOT(TIMPLOT1,A,0.0,1.0)
PLOT(TIMPLOT1,B,0.0,1.0);PLOT(TIMPLOT1,C,0.0,1.0)
PATCH(TIMPLOT2,CONTUR,1,1,1,NY,1,NZ,1,LSTEP)
PLOT(TIMPLOT2,W1,0.0,10);PLOT(TIMPLOT2,H1,0.0,10)
PLOT(TIMPLOT2,A,0.0,10);PLOT(TIMPLOT2,B,0.0,10.0)
PLOT(TIMPLOT2,C,0.0,10)
 
  ***actdem***
xulast=.01
              2. Inlet-- uniform flow Re=100
INLET(UNIFORM,LOW,#1,#1,#1,#NREGY,#1,#1,1,2)
VALUE(UNIFORM,P1,0.1);VALUE(UNIFORM,W1,0.1)
VALUE(UNIFORM,V1,0.0);VALUE(UNIFORM,H1,0.0)
VALUE(UNIFORM,A,0.0);VALUE(UNIFORM,B,0.0)
VALUE(UNIFORM,C,0.0)
              3. Inlet-- uniform flow Re=1000
INLET(re1000,LOW,#1,#1,#1,#NREGY,#1,#1,3,lstep)
VALUE(re1000,P1,1.0);VALUE(re1000,W1,1.0)
VALUE(re1000,V1,0.0);VALUE(re1000,H1,0.0)
VALUE(re1000,A,0.0);VALUE(re1000,B,0.0)
VALUE(re1000,C,0.0)
 
idispa=1; csg1=p
selref=t; resfac=1.e-2
tstswp=-1