PHOTON USE p;;;; view z; Gr ou z 1 msg velocity vectors vec z 1 sh; pause msg wall-distance contours con wdis z 1 fi;0.001; Pause msg effective-viscosity contours con enut z 1 fi;0.001; Pause ENDUSE GROUP 1. RUN TITLE AND OTHER PRELIMINARIES TEXT(2D Turbulent Free Convection In A Cavity TITLE DISPLAY Turbulent buoyancy-driven air flow in a tall rectangular cavity of 5:1 aspect ratio with a Rayleigh number of 4.E10 is calculated using a buoyancy-extended low-Reynolds-number k-e model. The vertical walls are isothermal with a temperature difference of 45.8 degC; the horizontal walls are adiabatic. This problem has been studied experimentally by Cheesewright et al (ASME HTD-60, p75, New York, 1986) and numerically by Davidson (Num. Heat Transfer,Vol.18,p129,1990). The calculation may be performed with or without the Boussinesq approximation and with the energy equation solved via the temperature TEM1 or the static enthalpy H1. Both calculations compute the dynamic laminar viscosity from Sutherland's formula. When the Boussinesq approximation is not used, variable density and thermal conductivity are also employed . ENDDIS Calculations with BOUSS=T require 1200 sweeps for convergence, whereas those with BOUSS=F require 1600 sweeps. For speed of computation during demonstration, the case has been set up to run for 100 sweeps only. BOOLEAN(BOUSS); CHAR(CHOICE) MESG( Do you want the Boussinesq approximation? (y/N) READVDU(ANS,CHAR,N) IF(:ANS:.EQ.Y) THEN + BOUSS=T + MESG( Boussinesq approximation ELSE + BOUSS=F + MESG( Variable density option ENDIF MESG( Enter required energy variable? (TEM1/H1) MESG( Enter the required energy variable. MESG( TEM1 - Temperature ( default ) MESG( H1 - Enthalpy READVDU(CHOICE,CHAR,TEM1) IF(:CHOICE:.EQ.TEM1) THEN + MESG( TEM1 solution selected ELSE + MESG( H1 solution selected + CHOICE=H1 ENDIF REAL(TCOLD,THOT,TDIF,CP,HEIGHT,WIDTH,MU,BETA,TREF,AGRAV) REAL(HCOLD,HHOT,HREF,DTF,VBUOY,RAY,RHO,TBRUNT,KOND); CP=1.008E3 HEIGHT=2.5;WIDTH=0.5; TCOLD=34.2+273.; TDIF=45.8; THOT=TCOLD+TDIF HCOLD=CP*TCOLD;HHOT=CP*THOT; TREF=0.5*(THOT+TCOLD);HREF=CP*TREF AGRAV=-9.81;BETA=1./TREF; RHO=353.505/TREF;MU=2.0383E-5 GROUP 2. Transience; time-step specification GROUP 3. X-direction grid specification ** for a fine mesh use NX=NY=56 and ALF=3.5 NX=28 REAL(ALF,GAM,ALFM);ALF=2.0;ALFM=-ALF DO JJ=1,NX + GAM=ALF*(2.*(JJ/NX)-1.) + XFRAC(JJ)=-0.5*TANH(GAM)/TANH(ALFM)+0.5 + XFRAC(JJ)=XFRAC(JJ)*WIDTH ENDDO group 4. y-direction grid specification NY=28 DO JJ=1,NY + GAM=ALF*(2.*(JJ/NY)-1.) + YFRAC(JJ)=-0.5*TANH(GAM)/TANH(ALFM)+0.5 + YFRAC(JJ)=YFRAC(JJ)*HEIGHT ENDDO group 7. variables stored, solved & named #solvel SOLVE(:CHOICE:) TURMOD(KEMODL-LOWRE) STORE(ENUT,VISL) IF(:CHOICE:.EQ.H1) THEN + STORE(TMP1); TMP1=LINH ENDIF group 8. terms (in differential equations) & devices TERMS(:CHOICE:,N,P,P,P,P,P) group 9. properties of the medium (or media) KOND=3.5E-3+7.58E-5*TREF IF(BOUSS) THEN + RHO1=RHO + PRNDTL(:CHOICE:)=-KOND ELSE + STORE(DEN1,KOND) + FIINIT(DEN1)=RHO; FIINIT(KOND)=KOND + RHO1=GRND10; RHO1A=0.; RHO1B=1./353.505 + PRNDTL(:CHOICE:)=-GRND4;PRLH1A=3.5E-3;PRLH1B=7.5E-5 ENDIF CP1 =CP ENUL=SUTHLAND;ENULA=1.458E-6;ENULB=110.4 PRT(:CHOICE:)=0.9 RAY=-AGRAV*BETA*HEIGHT**3*TDIF*MU*CP/KOND/(MU/RHO)**2 RAY BETA GROUP 11. Initialization of variable or porosity fields FIINIT(ENUT)=40.*MU/RHO VBUOY=(-2.*BETA*0.5*TDIF*AGRAV*0.1*HEIGHT)**0.5 VBUOY FIINIT(KE)=(0.1*VBUOY)**2 FIINIT(EP)=0.09*FIINIT(KE)**2/FIINIT(ENUT) IF(:CHOICE:.EQ.TEM1) THEN + HHOT=THOT; HCOLD=TCOLD; HREF=TREF ENDIF FIINIT(:CHOICE:)=0.5*(HHOT+HCOLD) group 13. boundary conditions and special sources 1. Hot wall boundary: Constant Temperature of 65.8 deg C. WALL (HOT,WEST,1,1,1,NY,1,NZ,1,1) COVAL(HOT,:CHOICE:,LOGLAW,HHOT) 2. Cold wall boundary: Constant Temperature of 20 deg C. WALL (COLD,EAST,NX,NX,1,NY,1,NZ,1,1) COVAL(COLD,:CHOICE:,LOGLAW,HCOLD) 3. Top wall boundary: adiabatic but with friction WALL(TOPWAL,NORTH,1,NX,NY,NY,1,NZ,1,1) 4. Bottom wall boundary: adiabatic but with friction WALL(BOTWAL,SOUTH,1,NX,1,1,1,NZ,1,1) 5. Buoyancy force BUOYA=0.;BUOYB=AGRAV;BUOYC=0. PATCH(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,1) IF(BOUSS) THEN + COVAL(BUOY,V1,FIXFLU,BOUSS) + DVO1DT=BETA; BUOYE=HREF ELSE + COVAL(BUOY,V1,FIXFLU,DENSDIFF);BUOYD=RHO ENDIF 6. Reference pressure at the centre of the cavity PATCH(REFP,CELL,NX/2,NX/2,NY/2,NY/2,1,NZ,1,1) COVAL(REFP,P1,FIXP,0.0); COVAL(REFP,V1,ONLYMS,0.0) COVAL(REFP,H1,ONLYMS,SAME) 7. Buoyancy terms in the k-e model PATCH(KEBUOY,PHASEM,1,NX,1,NY,1,NZ,1,1) COVAL(KEBUOY,KE,KESOURCE,KESOURCE) COVAL(KEBUOY,EP,KESOURCE,KESOURCE) GROUP 16. Termination of iterations LITER(V1)=2;LITER(U1)=2;LITER(:CHOICE:)=50 LITER(KE)=2;LITER(EP)=2 GROUP 17. Under-relaxation devices VBUOY=(-BETA*TDIF*AGRAV*HEIGHT)**0.5; TBRUNT=HEIGHT/VBUOY DTF=TBRUNT/NY;KELIN=3 IF(BOUSS) THEN + RELAX(V1,FALSDT,DTF); RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF); RELAX(EP,FALSDT,DTF) + RELAX(:CHOICE:,FALSDT,50.*DTF);LSWEEP=1200 ELSE + RELAX(V1,FALSDT,DTF); RELAX(U1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF); RELAX(EP,FALSDT,DTF) + RELAX(:CHOICE:,FALSDT,50.*DTF);LSWEEP=1600;DENPCO=T ENDIF LSWEEP=100 GROUP 18. Limits on variables or increments to them VARMIN(:CHOICE:)=HCOLD; VARMAX(:CHOICE:)=HHOT GROUP 22. Spot-value print-out IYMON=NY/2; IXMON=5; NYPRIN=NY/5; NXPRIN=NX/5; NPLT=20 TSTSWP=-1;YPLS=T;WALPRN=T; ITABL=3 GROUP 23. Field print-out and plot control