PHOTON USE p flow;;;; gr ou y 1 msg the solid regions, displayed via the prl values con prl y 1 fi;0.1;pause msg the velocity vectors vec y 1;pause;vec off;con off;red msg temperature contours con temp y 1 fi;0.01 enduse GROUP 1. Run title and other preliminaries TEXT(Conjugate Heat Transf In Air Flow DISPLAY The following cases concern the calculation of the temperature field within and around several metal plates and blocks, over which and around which air is flowing. The conductivity of the metal is supplied by the field named PRL, the information for is transferred to EARTH via the GREX-called subroutine GXPRL. The geometry and flow are depicted diagramatically below: ____________________________________________________________ | Zero Pressure OUTLET3 ^ | |-----> NX5 cells | | 1.0m | | | Zero | |-----> <--0.2m--> | Pressure | _________ v OUTLET1 |Air |BLOCK 2 | ^ | |INLET1 |NZ6+NZ7 | 0.2m NX4 | |(WIN,T1IN) __________________|_cells__| v cells | |-----> ^0.05m| | P L A T E 2 | | | | v NX3 |P |____________________|P | | | ^ |l | |l | | |-----> 1.0 m |a | |a | | | NX1+NX2|t | <-1.0m-> |t | | | cells |e | ________ |e | | | | | | ^ ^ |BLOCK1| ^ | | | | | |1 | | | |NZ4 |0.5m |3 | | |_adiabatic_v_____|__|_|__|_|NX1___|_v____|__|___adiabatic__| Air Zero (UIN,T2IN) INLET2 Pressure OUTLET2 NZ2 cells NZ7 cells <----2.0m-------->< ><----- 2.0 m ------>< ><----2.0 m ---> NZ1 cells 0.05m NZ3+NZ4+NZ5+NZ6 0.05m NZ8 cells cells _ ^ /| | y (1.0m) x / |/ -- z --> Solution for the air-flow is performed first in isolation from the heat-transfer problem: all of the different heat-transfer cases are based upon this flow-field. The flow-field, once obtained, is frozen, and the heat-transfer problem is solved. Users might find it instructive to try varying the inlet velocities, and thereby vary the amount of cooling or heating of the plates and blocks by the air. In particular, reduction of UIN will cause BLOCK1 to become much hotter. Similarly, the strength of the heat sources, their location, and the conductivities, heat capacities and densities of the plates can be adjusted to produce rather different problems. Imperfect contact between the plates and blocks might be simulated by introducing the relevant surface porosities with values less than one in appropriate places. ENDDIS Symbols: CPAIR and CPMET are the specific heats of the metal and air, WIN and UIN are the inlet velocities at the inlets parallel to the z- and x-axes, T1IN and T2IN are the temperatures of the air at the two inlets, ENLAIR is the laminar viscosity of the air, RHOAIR is the density of the air, REAL(CPAIR,CPMET,WIN,UIN,T1IN,T2IN,ENLAIR,RHOAIR,COND1,COND2) REAL(PRTAIR) **Physical parameters RHOAIR=1.0; ENLAIR=2.0E-5; PRTAIR=0.7; CPAIR=1.0E3; CPMET=4.6E2 **Boundary condition parameters WIN=5.0; T1IN=20.0; UIN=1.0; T2IN=50.0 **Grid parameters INTEGER(NX1,NX2,NX3,NX4,NX5,NX6) INTEGER(NZ1,NZ2,NZ3,NZ4,NZ5,NZ6,NZ7,NZ8) INTEGER(NXW,NXE,NZL,NZH,NXZ) NX1=5; NX2=5; NX3=3; NX4=3; NX5=10 NZ1=10; NZ2=3; NZ3=4; NZ4=4; NZ5=2; NZ6=2; NZ7=3; NZ8=10 GROUP 3. X-direction grid specification NREGX=5 IREGX=1; GRDPWR(X,NX1,0.5,1.0) IREGX=2; GRDPWR(X,NX2,0.5,1.0) IREGX=3; GRDPWR(X,NX3,0.05,1.0) IREGX=4; GRDPWR(X,NX4,0.2,1.0) IREGX=5; GRDPWR(X,NX5,1.0,1.0) GROUP 5. Z-direction grid specification NREGZ=8 IREGZ=1; GRDPWR(Z,NZ1,2.0,1.0) IREGZ=2; GRDPWR(Z,NZ2,0.05,1.0) IREGZ=3; GRDPWR(Z,NZ3,0.67,1.0) IREGZ=4; GRDPWR(Z,NZ4,0.67,1.0) IREGZ=5; GRDPWR(Z,NZ5,0.33,1.0) IREGZ=6; GRDPWR(Z,NZ6,0.33,1.0) IREGZ=7; GRDPWR(Z,NZ7,0.05,1.0) IREGZ=8; GRDPWR(Z,NZ8,2.0,1.0) GROUP 7. Variables stored, solved & named SOLVE(U1,W1,P1,H1); NAME(H1)=TEMP SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(TEMP,Y,N,N,N,N,N) STORE(BLOK,PRL) GROUP 8. Terms (in differential equations) & devices TERMS(TEMP,N,Y,Y,P,P,P) GROUP 9. Properties of the medium (or media) ENUL=ENLAIR; RHO1=RHOAIR; ENUT=50.0*ENLAIR **The following statement activates the GREX call to the subroutine GXPRL which transfers the conductivity field (PRL) data to EARTH. PRNDTL(TEMP)=-GRND1 GROUP 11. Initialization of variable or porosity fields INIADD=F FIINIT(P1)=0.0; FIINIT(U1)=0.0; FIINIT(W1)=WIN FIINIT(TEMP)=T1IN **The following statements set the conductivity field PRL in the air, in the plates and in the blocks. The BLOK field is initialized to define the zones over which zonal block-corrections are activated. FIINIT(PRL)=ENLAIR/PRTAIR; FIINIT(BLOK)=1.0 **Plate 1 PATCH(plte1,INIVAL,#1,#3,1,NY,#2,#2,1,LSTEP) INIT(plte1,PRL,0.0,40.0/(CPAIR*RHOAIR)) INIT(plte1,BLOK,0.0,2.0) **plte 2 PATCH(plte2,INIVAL,#3,#3,1,NY,#3,#6,1,LSTEP) INIT(plte2,PRL,0.0,40.0/(CPAIR*RHOAIR)) INIT(plte2,BLOK,0.0,2.0) **Plate 3 PATCH(plte3,INIVAL,#1,#3,1,NY,#7,#7,1,LSTEP) INIT(plte3,PRL,0.0,1.0/(CPAIR*RHOAIR)) INIT(plte3,BLOK,0.0,2.0) **Inner air PATCH(INAIR,INIVAL,#1,#2,1,NY,#3,#6,1,LSTEP) INIT(INAIR,BLOK,0.0,4.0) **Block 1 PATCH(BLOCK1,INIVAL,#1,#1,1,NY,#4,#4,1,LSTEP) INIT(BLOCK1,PRL,0.0,40.0/(CPAIR*RHOAIR)) INIT(BLOCK1,BLOK,0.0,3.0) **Block 2 PATCH(BLOCK2,INIVAL,#4,#4,1,NY,#6,#7,1,LSTEP) INIT(BLOCK2,PRL,0.0,40.0/(CPAIR*RHOAIR)) INIT(BLOCK2,BLOK,0.0,5.0) GROUP 13. Boundary conditions and special sources **Inlet 1 INLET(INLET1,LOW,#1,#NREGX,1,NY,#1,#1,1,LSTEP) VALUE(INLET1,P1,RHOAIR*WIN) VALUE(INLET1,W1,WIN) VALUE(INLET1,TEMP,T1IN) **Inlet 2 INLET(INLET2,WEST,#1,#1,1,NY,#3,#3,1,LSTEP) VALUE(INLET2,P1,RHOAIR*UIN) VALUE(INLET2,U1,UIN) VALUE(INLET2,TEMP,T2IN) **Outlet 1 OUTLET(OUTLET1,HIGH,#1,#NREGX,1,NY,#NREGZ,#NREGZ,1,LSTEP) COVAL(OUTLET1,TEMP,ONLYMS,SAME) **Outlet 2 OUTLET(OUTLET2,WEST,#1,#1,1,NY,#5,#6,1,LSTEP) COVAL(OUTLET2,TEMP,ONLYMS,SAME) **Outlet 3 OUTLET(OUTLET3,EAST,#NREGX,#NREGX,NY,NY,2,NZ-1,1,LSTEP) COVAL(OUTLET3,TEMP,ONLYMS,SAME) **Fix velocities in blocked regions **Plate 1 PATCH(PLT1W1,CELL,#1,#3,1,NY,%1,%2,1,LSTEP) COVAL(PLT1W1,W1,FIXVAL,0.0) PATCH(PLT1U1,CELL,#1,#3,1,NY,#2,#2,1,LSTEP) COVAL(PLT1U1,U1,FIXVAL,0.0) **Plate 2 PATCH(PLT2W1,CELL,#3,#3,1,NY,#3,#6,1,LSTEP) COVAL(PLT2W1,W1,FIXVAL,0.0) PATCH(PLT2U1,CELL,%2,%3,1,NY,#3,#6,1,LSTEP) COVAL(PLT2U1,U1,FIXVAL,0.0) **Plate 3 PATCH(PLT3U1,CELL,#1,#3,1,NY,#7,#7,1,LSTEP) COVAL(PLT3U1,U1,FIXVAL,0.0) PATCH(PLT3W1,CELL,#1,#3,1,NY,%6,%7,1,LSTEP) COVAL(PLT3W1,W1,FIXVAL,0.0) **Block 1 PATCH(BLK1W1,CELL,#1,#1,1,NY,%3,%4,1,LSTEP) COVAL(BLK1W1,W1,FIXVAL,0.0) PATCH(BLK1U1,CELL,#1,#1,1,NY,#4,#4,1,LSTEP) COVAL(BLK1U1,U1,FIXVAL,0.0) **Block 2 PATCH(BLK2W1,CELL,#4,#4,1,NY,%5,%7,1,LSTEP) COVAL(BLK2W1,W1,FIXVAL,0.0) PATCH(BLK2U1,CELL,#4,#4,1,NY,#6,#7,1,LSTEP) COVAL(BLK2U1,U1,FIXVAL,0.0) **Heat Source of 1000 Watts in centre of right face of plate 1. NXW=(NX1+NX2+NX3)/2; NXE=NXW; NZL=NZ1+NZ2; NZH=NZL PATCH(HEATSOR,CELL,NXW,NXE,1,NY,NZL,NZH,1,LSTEP) COVAL(HEATSOR,TEMP,FIXFLU,1000.0/CPAIR) **Case 1, fix temperature in BLOCK 1 to 100 C. PATCH(FIXTEMP,CELL,#1,#1,1,NY,#4,#4,1,LSTEP) COVAL(FIXTEMP,TEMP,1.0,100.0) GROUP 15. Termination of sweeps LSWEEP=100; resfac=0.01 GROUP 17. Under-relaxation devices **PATCH-wise under-relaxation of the velocities is used because the typical velocities of the air outside of the cavity and of that inside the cavity can be very different. Some of the most interesting variants of the base set of cases are generated by reducing UIN substantially. PATCH(VELUR1,PHASEM,#1,#5,1,1,#1,#1,1,LSTEP) COVAL(VELUR1,U1,WIN*NX,SAME); COVAL(VELUR1,W1,WIN*NZ,SAME) PATCH(VELUR2,PHASEM,#4,#5,1,1,#2,#7,1,LSTEP) COVAL(VELUR2,U1,WIN*NX,SAME); COVAL(VELUR2,W1,WIN*NZ,SAME) PATCH(VELUR3,PHASEM,#1,#5,1,1,#8,#NREGZ,1,LSTEP) COVAL(VELUR3,U1,WIN*NX,SAME); COVAL(VELUR3,W1,WIN*NZ,SAME) PATCH(VELUR4,PHASEM,#1,#2,1,1,#3,#6,1,LSTEP) COVAL(VELUR4,U1,(UIN+0.001)*NX/2.,SAME) COVAL(VELUR4,W1,(UIN+0.001)*(NZ3+NZ4+NZ5+NZ6),SAME) GROUP 22. Spot-value print-out IXMON=1; IZMON=22; TSTSWP=-1 GROUP 24. Preparations for continuation runs. NSAVE=FLOW