TALK=T;RUN( 1, 1)
 ** LOAD(254) from the PHOENICS Input Library
 
  ------------------------------------------------------------------
  PHOTON USE
   p
 
 
 
   up z;vec x 1 sh;pau;clear
   con p1 x 1 fi;.01;pau;clear
   con tem1 x 1 fi;.01;pau;cl
  ENDUSE
  ------------------------------------------------------------------
 
    GROUP 1. Run title and other preliminaries
TEXT(Free Convection Between Vertical Plates
#cls
TITLE
  DISPLAY
  The problem considered is laminar free convection of air
  between a pair of parallel, vertically-mounted flat plates of
  length H. These plates are maintained either at uniform
  heat fluxes (UHF) qw or uniform wall temperatures (UWT) tw.
 
  The solution domain has one plane of symmetry at the centre
  of the gap B between the two plates. The external pressure
  is the same at both the top and bottom of the plate, so the
  flow is driven entirely by buoyancy forces.
 
  The Boussinesq assumption is made in the simulations, and the
  flow is characterised by the Grashof number GrB and the
  gap-to-length ratio B/H.
#pause
 
  The solution domain comprises the gap between the
  two channel plates, as well as the free environment upstream
  and downstream of the channel.
 
  For economy, the solution domain may be restricted to the gap
  alone, although this approach is less accurate for developing
  flow because of the empirical representation of total pressure
  losses at the channel inlet and outlet.
 
  The practical application of free convection in vertical
  channels may be found in the electronics and telecommunications
  industry.
 
#pause
 
  The flow is fully developed if GrB*(B/H) < 1 for a UWT
  condition, and when GrB*(B/H) < 100 for a UHF condition (see
  Aung, Int.J. Heat Mass Transfer, Vol.15,p1577, 1972).
 
  Developing flow has been considered by Aung et al, Int.J.Heat
  Mass Transfer, Vol.15, p2293, 1972 & Morrone et al, Int.J.Heat
  Mass Transfer, Vol.40, No.5, p993, 1997).
 
#pause
   The dimensionless equations solved are:
 
      dW/dZ + dV/dY = 0 ;
      W*dZ/dZ + V*dV/dY =  d/dY(dW/dY) + d/dZ(dW/dZ)
                         - dP/DZ + GrB*T
      W*dT/dZ + V*dT/dY =  (1./Pr)*d/dY(dT/dY)
                         + (1./Pr)*d/dZ(dT/dZ)
    where
 
      Z  = z/B ; Y = y/B ; W = w*B/enul ; V = v*B/enul
      P  = (p-p,ref)*(B**2)/(rho*enul**2)
      T  = k*(t-tref)/(qw*B)  ; Pr = rho*enul*cp/k
      GrB = g*beta*qw*B**4/(k*enul**2)
 
#pause
   This Q1 may be used to run 6 cases which are documented in
   the literature. The results are summarised below in terms of
   the dimensionless volumetric flow rate PSI(=wbulk*B/enul):
 
   Developing Flow (UHF)
   ---------------------
                         phoenics        phoenics
                      reduced domain   full domain    Morrone
    GrH=1.E5 B/H=0.5      19.0            27.0         30.0
    GrH=1.E4 B/H=0.8      12.5            19.0         21.5
 
#pause
   Fully-Developed Flow
   --------------------
                                  phoenics             Aung
                             reduced & full domain
    GrB=1.E2  B/H=0.04 (UWT)         8.16              8.33
    GrB=1.E2  B/H=0.04 (UHF)        14.80             17.13
 
   where GrH=GrB*(H/B)**4a n The dimensionless volumetric flow
   rate produced by PHOENICS can be obtained from the RESULT file
   by taking TWICE the printed NETT source of R1 at INLET.
 
#pause
  ENDDIS
 
BOOLEAN(ISOWAL,FDEV,FDOM)
 
MESG( Enter y for isothermal wall and n for a uniform heat flux
MESG( Default = uniform heat flux
READVDU(ANS,CHAR,N)
IF(:ANS:.EQ.Y) THEN
+ ISOWAL=T
+ MESG( Isothermal wall condition
ELSE
+ ISOWAL=F
+ MESG( Uniform heat flux condition
ENDIF
 
MESG( Do you want to simulate fully-developed flow? (y/n)
MESG( Default = developing flow
READVDU(ANS,CHAR,N)
IF(:ANS:.EQ.Y) THEN
+ FDEV=T
+ MESG( Fully-developed flow
ELSE
+ FDEV=F
+ MESG( Developing flow
ENDIF
 
MESG( Do you want to solve in the gap only? (y/n)
MESG( Default = solution domain is gap + free environment
READVDU(ANS,CHAR,N)
IF(:ANS:.EQ.Y) THEN
+ FDOM=F
+ MESG( Solution domain restricted to gap
ELSE
+ FDOM=T
+ MESG( Solution domain includes free environment
ENDIF
 
REAL(PLATEB,PLATEL,PBDL,GRASH,GPRL,TAMB,QWAL,KOND,VBUOY,PIN,KLOSS)
REAL(PSI,PSI2,TMAX,PMAX,GRASL)
 
GPRL=0.71;TAMB=0.
 
IF(FDEV) THEN
+ MESG(Enter Grashof number - default 1.E2
+ READVDU(GRASH,REAL,1.E2)
 
+ MESG(Enter Plate Width/Length ratio - default 0.04
+ READVDU(PBDL,REAL,0.04)
ELSE
+ MESG(Enter Grashof number - default 1.E4
+ READVDU(GRASL,REAL,1.E4)
 
+ MESG(Enter Plate Width/Length ratio - default 0.8
+ READVDU(PBDL,REAL,0.8)
+ GRASH = GRASL*(PBDL)**4
ENDIF
 
PLATEB=1.0 ;  PLATEL=PLATEB/PBDL
    GROUP 4. Y-direction grid specification
IF(FDOM) THEN
+ NREGY=2
+ IREGY=1;GRDPWR(Y,25,PLATEB,    0.8)
+ IREGY=2;GRDPWR(Y,30,0.5*PLATEB,1.2)
ELSE
+ GRDPWR(Y,30,0.5*PLATEB,1.0)
ENDIF
    GROUP 5. Z-direction grid specification
IF(FDOM) THEN
+ NREGZ=3
+ IREGZ=1;GRDPWR(Z, 20,PLATEL,0.8)
+ IREGZ=2;GRDPWR(Z,-30,PLATEL,1.2)
+ IREGZ=3;GRDPWR(Z, 15,PLATEL,1.8)
ELSE
+ GRDPWR(Z,30,PLATEL,1.0)
ENDIF
    GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1,TEM1);SOLUTN(TEM1,Y,Y,Y,P,P,N)
SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N)
SOLUTN(P1,Y,Y,Y,P,P,P)
    GROUP 8. Terms (in differential equations) & devices
TERMS(TEM1,N,Y,Y,N,Y,N)
IF(FDOM) THEN
+ SCHEME(LUS,V1,W1)
ENDIF
    GROUP 9. Properties of the medium (or media)
CP1=1.0 ; RHO1=1.0 ; ENUL=1.0
KOND=RHO1*CP1*ENUL/GPRL
PRNDTL(TEM1)=-KOND
    GROUP 11. Initialization of variable or porosity fields
VBUOY=(GRASH*PLATEL)**0.5
FIINIT(TEM1)=TAMB
IF(FDOM) THEN
+ FIINIT(W1)=0.0
ELSE
+ FIINIT(W1)=0.25*VBUOY
+ PIN=-0.5*VBUOY*VBUOY
   **Linear pressure variation set as initial field.
+ PATCH(PINIT,LINVLZ,1,1,1,NY,1,NZ,1,1)
+ COVAL(PINIT,P1,-PIN/ZWLAST,PIN)
ENDIF
CONPOR(PLATE,0.0,CELL,1,1,-#1,-#1,-#2,-#2)
    GROUP 13. Boundary conditions and special sources
 
    ** Inlet boundary condition
PATCH(INLET,LOW,1,1,1,NY,1,1,1,1)
IF(FDEV) THEN
+ COVAL(INLET,P1,1.E2,0.)
ELSE
   ** Inflow proportional to square root of pressure difference.
+ KLOSS=1.0 ; COVAL(INLET,P1,-2./(1.+KLOSS),0.)
ENDIF
 
IF(FDOM) THEN
+ COVAL(INLET,P1,1.E2,0.)
ENDIF
   ** momentum convected into cell assumed equal to that leaving
COVAL(INLET,TEM1,ONLYMS,TAMB)
 
IF(.NOT.FDOM) THEN
   ** Wall friction boundary condition.
+ WALL (HOTWALL,SOUTH,1,1,1,1,1,NZ,1,1)
+ COVAL(HOTWALL,W1,1.0,0.)
ENDIF
   ** Wall thermal boundary condition.
QWAL=1.0
IF(ISOWAL) THEN
   ** isothermal wall
+ PATCH(HEATFLUX,SWALL,1,1,$2,$2,#2,#2,1,1)
+ COVAL(HEATFLUX,TEM1,1.0,1.0)
ELSE
   ** uniform heat flux wall
+ PATCH(HEATFLUX,SWALL,1,1,$2,$2,#2,#2,1,1)
+ COVAL(HEATFLUX,TEM1,FIXFLU,QWAL)
ENDIF
 
   ** Exit boundary condition.
PATCH(EXIT,HIGH,1,1,1,NY,NZ,NZ,1,1)
  **  Total pressure in external environment = 0
IF(FDEV) THEN
+ COVAL(EXIT,P1,1.E2,0.)
ELSE
   ** Inflow proportional to square root of pressure difference.
+ KLOSS=1.0 ; COVAL(EXIT,P1,-2./(1.+KLOSS),0.)
ENDIF
IF(FDOM) THEN
+ COVAL(EXIT,P1,1.E2,0.)
ENDIF
COVAL(EXIT,TEM1,ONLYMS,TAMB)
 
IF(FDOM) THEN
+ PATCH(FREEBH,SOUTH,1,1,1,1,#3,#3,1,1)
+ COVAL(FREEBH,P1,1.E2,0.)
+ COVAL(FREEBH,TEM1,ONLYMS,TAMB)
ENDIF
   **Boussinesq approximation for buoyancy force.
BUOYE=TAMB; DVO1DT=GRASH; BUOYC=-1.0
PATCH(BUOY,PHASEM,1,1,1,NY,1,NZ,1,1)
COVAL(BUOY,W1,FIXFLU,BOUSS)
 
    GROUP 15. Termination of sweeps
LSWEEP=800 ; LITER(TEM1)=50 ; LITER(P1)=50
ENDIT(P1)=GRND1
    GROUP 17. Under-relaxation devices
REAL(DTF);DTF=50.*PLATEL/(0.25*VBUOY)
RELAX(V1,FALSDT,DTF); RELAX(W1,FALSDT,DTF)
RELAX(TEM1,FALSDT,1.E9)
    GROUP 22. Spot-value print-out
IYMON=NY-1; IZMON=NZ-1
    GROUP 23. Field print-out and plot control
ITABL=3; NPLT=10; NZPRIN=2
TSTSWP=-1
 
  ** fully-developed analytical solutions of Aung (1972)
     psi  = dimensionless volume flow rate
     pmax = dimensionless maximum pressure
     tmax = dimensionless peak temperature
IF(FDEV) THEN
 
IF(ISOWAL) THEN
  ** uniform temperature condition
+ PSI=GRASH/12.
ELSE
  ** uniform heat flux condition
+ PSI  = (GRASH/(12.*GPRL*PBDL))**0.5
+ PMAX = -17.525*PSI**3/(GPRL*GRASH)
+ TMAX = PSI*24./GRASH
+ PMAX
+ TMAX
ENDIF
 
ELSE
  ** numerical correlation of Morrone et al (1997) for
     developing flow valid for 1E2 < GrL < 1E5 and
     0.2 < B/H < 3.0
+ PSI=0.81*(GRASL)**0.384;PSI=PSI*(PBDL)**1.17
ENDIF
MESG(Dimensionless flow rate for 1/2 channel
PSI=0.5*PSI
PSI
DISTIL=T
EX(P1  )=1.254E+02;EX(V1  )=1.595E+00;EX(W1  )=9.028E+00
STORE(PRPS);EX(PRPS)=7.902E-01;EX(VPOR)=7.902E-01;EX(TEM1)=4.486E-02
 
 LIBREF = 254
STOP