TALK=T;RUN( 1, 1) ** LOAD(254) from the PHOENICS Input Library ------------------------------------------------------------------ PHOTON USE p up z;vec x 1 sh;pau;clear con p1 x 1 fi;.01;pau;clear con tem1 x 1 fi;.01;pau;cl ENDUSE ------------------------------------------------------------------ GROUP 1. Run title and other preliminaries TEXT(Free Convection Between Vertical Plates #cls TITLE DISPLAY The problem considered is laminar free convection of air between a pair of parallel, vertically-mounted flat plates of length H. These plates are maintained either at uniform heat fluxes (UHF) qw or uniform wall temperatures (UWT) tw. The solution domain has one plane of symmetry at the centre of the gap B between the two plates. The external pressure is the same at both the top and bottom of the plate, so the flow is driven entirely by buoyancy forces. The Boussinesq assumption is made in the simulations, and the flow is characterised by the Grashof number GrB and the gap-to-length ratio B/H. #pause The solution domain comprises the gap between the two channel plates, as well as the free environment upstream and downstream of the channel. For economy, the solution domain may be restricted to the gap alone, although this approach is less accurate for developing flow because of the empirical representation of total pressure losses at the channel inlet and outlet. The practical application of free convection in vertical channels may be found in the electronics and telecommunications industry. #pause The flow is fully developed if GrB*(B/H) < 1 for a UWT condition, and when GrB*(B/H) < 100 for a UHF condition (see Aung, Int.J. Heat Mass Transfer, Vol.15,p1577, 1972). Developing flow has been considered by Aung et al, Int.J.Heat Mass Transfer, Vol.15, p2293, 1972 & Morrone et al, Int.J.Heat Mass Transfer, Vol.40, No.5, p993, 1997). #pause The dimensionless equations solved are: dW/dZ + dV/dY = 0 ; W*dZ/dZ + V*dV/dY = d/dY(dW/dY) + d/dZ(dW/dZ) - dP/DZ + GrB*T W*dT/dZ + V*dT/dY = (1./Pr)*d/dY(dT/dY) + (1./Pr)*d/dZ(dT/dZ) where Z = z/B ; Y = y/B ; W = w*B/enul ; V = v*B/enul P = (p-p,ref)*(B**2)/(rho*enul**2) T = k*(t-tref)/(qw*B) ; Pr = rho*enul*cp/k GrB = g*beta*qw*B**4/(k*enul**2) #pause This Q1 may be used to run 6 cases which are documented in the literature. The results are summarised below in terms of the dimensionless volumetric flow rate PSI(=wbulk*B/enul): Developing Flow (UHF) --------------------- phoenics phoenics reduced domain full domain Morrone GrH=1.E5 B/H=0.5 19.0 27.0 30.0 GrH=1.E4 B/H=0.8 12.5 19.0 21.5 #pause Fully-Developed Flow -------------------- phoenics Aung reduced & full domain GrB=1.E2 B/H=0.04 (UWT) 8.16 8.33 GrB=1.E2 B/H=0.04 (UHF) 14.80 17.13 where GrH=GrB*(H/B)**4a n The dimensionless volumetric flow rate produced by PHOENICS can be obtained from the RESULT file by taking TWICE the printed NETT source of R1 at INLET. #pause ENDDIS BOOLEAN(ISOWAL,FDEV,FDOM) MESG( Enter y for isothermal wall and n for a uniform heat flux MESG( Default = uniform heat flux READVDU(ANS,CHAR,N) IF(:ANS:.EQ.Y) THEN + ISOWAL=T + MESG( Isothermal wall condition ELSE + ISOWAL=F + MESG( Uniform heat flux condition ENDIF MESG( Do you want to simulate fully-developed flow? (y/n) MESG( Default = developing flow READVDU(ANS,CHAR,N) IF(:ANS:.EQ.Y) THEN + FDEV=T + MESG( Fully-developed flow ELSE + FDEV=F + MESG( Developing flow ENDIF MESG( Do you want to solve in the gap only? (y/n) MESG( Default = solution domain is gap + free environment READVDU(ANS,CHAR,N) IF(:ANS:.EQ.Y) THEN + FDOM=F + MESG( Solution domain restricted to gap ELSE + FDOM=T + MESG( Solution domain includes free environment ENDIF REAL(PLATEB,PLATEL,PBDL,GRASH,GPRL,TAMB,QWAL,KOND,VBUOY,PIN,KLOSS) REAL(PSI,PSI2,TMAX,PMAX,GRASL) GPRL=0.71;TAMB=0. IF(FDEV) THEN + MESG(Enter Grashof number - default 1.E2 + READVDU(GRASH,REAL,1.E2) + MESG(Enter Plate Width/Length ratio - default 0.04 + READVDU(PBDL,REAL,0.04) ELSE + MESG(Enter Grashof number - default 1.E4 + READVDU(GRASL,REAL,1.E4) + MESG(Enter Plate Width/Length ratio - default 0.8 + READVDU(PBDL,REAL,0.8) + GRASH = GRASL*(PBDL)**4 ENDIF PLATEB=1.0 ; PLATEL=PLATEB/PBDL GROUP 4. Y-direction grid specification IF(FDOM) THEN + NREGY=2 + IREGY=1;GRDPWR(Y,25,PLATEB, 0.8) + IREGY=2;GRDPWR(Y,30,0.5*PLATEB,1.2) ELSE + GRDPWR(Y,30,0.5*PLATEB,1.0) ENDIF GROUP 5. Z-direction grid specification IF(FDOM) THEN + NREGZ=3 + IREGZ=1;GRDPWR(Z, 20,PLATEL,0.8) + IREGZ=2;GRDPWR(Z,-30,PLATEL,1.2) + IREGZ=3;GRDPWR(Z, 15,PLATEL,1.8) ELSE + GRDPWR(Z,30,PLATEL,1.0) ENDIF GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,TEM1);SOLUTN(TEM1,Y,Y,Y,P,P,N) SOLUTN(V1,P,P,P,P,P,N);SOLUTN(W1,P,P,P,P,P,N) SOLUTN(P1,Y,Y,Y,P,P,P) GROUP 8. Terms (in differential equations) & devices TERMS(TEM1,N,Y,Y,N,Y,N) IF(FDOM) THEN + SCHEME(LUS,V1,W1) ENDIF GROUP 9. Properties of the medium (or media) CP1=1.0 ; RHO1=1.0 ; ENUL=1.0 KOND=RHO1*CP1*ENUL/GPRL PRNDTL(TEM1)=-KOND GROUP 11. Initialization of variable or porosity fields VBUOY=(GRASH*PLATEL)**0.5 FIINIT(TEM1)=TAMB IF(FDOM) THEN + FIINIT(W1)=0.0 ELSE + FIINIT(W1)=0.25*VBUOY + PIN=-0.5*VBUOY*VBUOY **Linear pressure variation set as initial field. + PATCH(PINIT,LINVLZ,1,1,1,NY,1,NZ,1,1) + COVAL(PINIT,P1,-PIN/ZWLAST,PIN) ENDIF CONPOR(PLATE,0.0,CELL,1,1,-#1,-#1,-#2,-#2) GROUP 13. Boundary conditions and special sources ** Inlet boundary condition PATCH(INLET,LOW,1,1,1,NY,1,1,1,1) IF(FDEV) THEN + COVAL(INLET,P1,1.E2,0.) ELSE ** Inflow proportional to square root of pressure difference. + KLOSS=1.0 ; COVAL(INLET,P1,-2./(1.+KLOSS),0.) ENDIF IF(FDOM) THEN + COVAL(INLET,P1,1.E2,0.) ENDIF ** momentum convected into cell assumed equal to that leaving COVAL(INLET,TEM1,ONLYMS,TAMB) IF(.NOT.FDOM) THEN ** Wall friction boundary condition. + WALL (HOTWALL,SOUTH,1,1,1,1,1,NZ,1,1) + COVAL(HOTWALL,W1,1.0,0.) ENDIF ** Wall thermal boundary condition. QWAL=1.0 IF(ISOWAL) THEN ** isothermal wall + PATCH(HEATFLUX,SWALL,1,1,$2,$2,#2,#2,1,1) + COVAL(HEATFLUX,TEM1,1.0,1.0) ELSE ** uniform heat flux wall + PATCH(HEATFLUX,SWALL,1,1,$2,$2,#2,#2,1,1) + COVAL(HEATFLUX,TEM1,FIXFLU,QWAL) ENDIF ** Exit boundary condition. PATCH(EXIT,HIGH,1,1,1,NY,NZ,NZ,1,1) ** Total pressure in external environment = 0 IF(FDEV) THEN + COVAL(EXIT,P1,1.E2,0.) ELSE ** Inflow proportional to square root of pressure difference. + KLOSS=1.0 ; COVAL(EXIT,P1,-2./(1.+KLOSS),0.) ENDIF IF(FDOM) THEN + COVAL(EXIT,P1,1.E2,0.) ENDIF COVAL(EXIT,TEM1,ONLYMS,TAMB) IF(FDOM) THEN + PATCH(FREEBH,SOUTH,1,1,1,1,#3,#3,1,1) + COVAL(FREEBH,P1,1.E2,0.) + COVAL(FREEBH,TEM1,ONLYMS,TAMB) ENDIF **Boussinesq approximation for buoyancy force. BUOYE=TAMB; DVO1DT=GRASH; BUOYC=-1.0 PATCH(BUOY,PHASEM,1,1,1,NY,1,NZ,1,1) COVAL(BUOY,W1,FIXFLU,BOUSS) GROUP 15. Termination of sweeps LSWEEP=800 ; LITER(TEM1)=50 ; LITER(P1)=50 ENDIT(P1)=GRND1 GROUP 17. Under-relaxation devices REAL(DTF);DTF=50.*PLATEL/(0.25*VBUOY) RELAX(V1,FALSDT,DTF); RELAX(W1,FALSDT,DTF) RELAX(TEM1,FALSDT,1.E9) GROUP 22. Spot-value print-out IYMON=NY-1; IZMON=NZ-1 GROUP 23. Field print-out and plot control ITABL=3; NPLT=10; NZPRIN=2 TSTSWP=-1 ** fully-developed analytical solutions of Aung (1972) psi = dimensionless volume flow rate pmax = dimensionless maximum pressure tmax = dimensionless peak temperature IF(FDEV) THEN IF(ISOWAL) THEN ** uniform temperature condition + PSI=GRASH/12. ELSE ** uniform heat flux condition + PSI = (GRASH/(12.*GPRL*PBDL))**0.5 + PMAX = -17.525*PSI**3/(GPRL*GRASH) + TMAX = PSI*24./GRASH + PMAX + TMAX ENDIF ELSE ** numerical correlation of Morrone et al (1997) for developing flow valid for 1E2 < GrL < 1E5 and 0.2 < B/H < 3.0 + PSI=0.81*(GRASL)**0.384;PSI=PSI*(PBDL)**1.17 ENDIF MESG(Dimensionless flow rate for 1/2 channel PSI=0.5*PSI PSI DISTIL=T EX(P1 )=1.254E+02;EX(V1 )=1.595E+00;EX(W1 )=9.028E+00 STORE(PRPS);EX(PRPS)=7.902E-01;EX(VPOR)=7.902E-01;EX(TEM1)=4.486E-02 LIBREF = 254 STOP