TEXT(2D Sonic Underexpanded Round Jet TITLE DISPLAY The problem considered is the near-field of a sonic under- expanded turbulent round jet issuing into stagnant surroundings. The stagnation enthalpy of the nozzle fluid is equal to that of the free stream, so that with the assumption of unit Prandtl numbers the energy equation need not be solved. The turbulence is represented by the k-e model, and the IPARAB=5 option of the parabolic solver is used to perform the marching integration. The calculations are started at the jet discharge plane, and carried out until 6 diameters downstream. The calculations are made with 35 radial grid cells and a forward step size of 1% (DZW1) of the local grid width. The main input parameters are the inlet and free-stream Mach numbers and the jet-to-ambient static pressure ratio. This case has been tested for inlet Mach numbers up to 2 and pressure ratios up to 2.5. ENDDIS So as to allow a direct computation of dimensionless flow variables, the flow equations are normalised such that the flow variables can be interpreted as: P/Po; RHO/RHOo; T/To; U/Uref; H/Href; KE/Uref**2; EP*L/Uref**3; and ENUT/(Uref*L). Here: Po, RHOo and To are the inlet total pressure, density and temperature; Uref=Ao/SQRT(GAMMA); L is the nozzle diameter; and Href=(gam-1.)*Ho/gam, where Ho is the inlet total enthalpy and gam is the specific heat ratio. Ao is the acoustic velocity at To (see Palacio et al, Int.J.Heat Mass Transfer, Vol.33, No.6, p1193, [1990] ). PHOTON USE P PARPHI VEC X 1 SH pau;cl con mach x 1 fi;.5 pau;cl con p1 x 1 fi;.5 pau cl; con tmp1 x 1 fi;.5 ENDUSE REAL(AIN,CP,GAM,GM1,PTOT,HTOT,RHTOT,PAMB,HAMB,MIN,PIN,HIN,RHOIN) REAL(WIN,EPSIN,TKEIN,DTF,DN,RAD,PRAT,RCON,RGAM,TTOT,TIN,UAC,RHAMB) REAL(FLOWIN,AOIN,UREF,DYGDZ,TAMB,MAMB,WAMB) CHAR(CTURB);BOOLEAN(GEXPAN) ** GEXPAN=T activates a linear y-grid expansion with z. A linear expansion is inappropriate, but it suffices to test for convergence. GEXPAN=F ** Gas properties GAM=1.4;GM1=GAM-1.;RCON=1.0;CP=RCON*GAM/GM1;RGAM=1./GAM ** INLET CONDITIONS & NOZZLE DIAMETER PTOT=1.0;RHTOT=1.0;TTOT=1.0;MIN=1.0;DN=1.0;HTOT=CP*TTOT RAD=0.5*DN PIN=PTOT/(1.+GM1*MIN*MIN/2.)**(GAM/GM1) RHOIN=RHTOT*(PIN/PTOT)**RGAM;WIN=MIN*(GAM*PIN/RHOIN)**0.5 TIN=PIN/(RCON*RHOIN);HIN=CP*TIN AOIN=(GAM*PTOT/RHTOT)*0.5;UREF=AOIN/GAM**0.5 ** Set static pressure ratio, i.e. PIN/PAMB PRAT=1.85 ** Free-stream Mach number MAMB=1.E-3 ** Ambient conditions PAMB=PIN/PRAT;HAMB=HTOT TAMB=HAMB/CP;RHAMB=PAMB/(RCON*TAMB) WAMB=MAMB*(GAM*PAMB/RHAMB)**0.5 GROUP 1. Run title and other preliminaries GROUP 2. Transience; time-step specification PARAB=T GROUP 3. X-direction grid specification CARTES=F;XULAST=0.1;AIN=0.5*XULAST*RAD*RAD GROUP 4. Y-direction grid specification NY=30;NREGY=2 IF(GEXPAN) THEN + DYGDZ=0.0875;AZYV=1.0;ZWADD=DN/DYGDZ ** The following line activates parabolic enhancement which accounts for grid-angle inclination in the calculation of the radial convection fluxes. + V1AD=GRND1 ENDIF IREGY=1;GRDPWR(Y,20,RAD,1.0);IREGY=2;GRDPWR(Y,15,2.*RAD,2.0) GROUP 5. Z-direction grid specification NZ=400;AZDZ=PROPY;DZW1=0.01 GROUP 6. Body-fitted coordinates or grid distortion GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1) ** Point-by-point velocity solution for IPARAB=5 SOLUTN(W1,P,P,Y,Y,P,P);SOLUTN(V1,P,P,Y,Y,P,P) ** Provide storage for the density. STORE(RHO1,MACH,ENUT,LEN1,H1,TMP1) ** Activate option to handle supersonic flow with a subsonic free stream by the following line of commands. IPARAB=5;STORE(MACZ);RMACHZ=1.0 ** For MIN>1 set RMACHZ=100.0 for convergence IF(MIN.GT.1) THEN + RMACHZ=100. ELSE + RMACHZ=1.0 ENDIF MESG( Enter the required turbulence model: MESG( KE - Standard k-e model (Default) MESG( LAM - Laminar model MESG( READVDU(CTURB,CHAR,KE) CASE :CTURB: OF WHEN KE,2 + MESG(Standard k-e model + TURMOD(KEMODL);KELIN=3 WHEN LAM,3 + MESG(Laminar model + ENUT=0. + RMACHZ=1.E3 ENDCASE GROUP 8. Terms (in differential equations) & devices DIFCUT=0;DENPCO=T ** Deactivate radial diffusion of V1 for IPARAB=5 TERMS(V1,P,P,N,P,P,P) GROUP 9. Properties of the medium (or media) RHO1=IDEALGAS;RHO1B=1./RCON;PRESS0=0.0 DRH1DP=IDEALGAS;RHO1C=RGAM TMP1=VARSTAGH;CP1=CP ENUL=1.8E-5/(UREF*DN) GROUP 10. Inter-phase-transfer processes and properties GROUP 11. Initialization of variable or porosity fields TKEIN=(0.05*WIN)**2;EPSIN=0.1643*TKEIN**1.5/(0.1*RAD/DN) FIINIT(EP)=EPSIN; FIINIT(KE)=TKEIN FIINIT(W1)=WIN;FIINIT(RHO1)=RHOIN;FIINIT(P1)=PIN FIINIT(H1)=HTOT;FIINIT(MACZ)=MIN FIINIT(TMP1)=TIN INIADD=F PATCH(INITFS,INIVAL,1,1,#2,#2,1,1,1,1) COVAL(INITFS,W1,0.0,0.0);COVAL(INITFS,P1,0.0,PAMB) COVAL(INITFS,TMP1,0.0,TAMB);COVAL(INITFS,RHO1,0.0,RHAMB) COVAL(INITFS,MACZ,0.0,MAMB) GROUP 13. Boundary conditions and special sources INLET(IN,LOW,1,NX,#1,#1,1,1,1,1) VALUE(IN,P1,RHOIN*WIN);VALUE(IN,W1,WIN) VALUE(IN,KE,TKEIN);VALUE(IN,EP,EPSIN) INLET(INFS,LOW,1,NX,#2,#2,1,1,1,1) VALUE(INFS,P1,RHAMB*WAMB);VALUE(INFS,W1,WAMB) PATCH(NB,NORTH,1,1,NY,NY,1,NZ,1,1) COVAL(NB,P1,1.E3,PAMB);COVAL(NB,W1,ONLYMS,WAMB) GROUP 16. Termination of iterations LITER(P1)=100 FLOWIN=RHOIN*WIN*AIN SELREF=F;RESREF(P1)=1.E-12*FLOWIN RESREF(W1)=1.E-12*FLOWIN*WIN RESREF(KE)=1.E-12*FLOWIN*TKEIN;RESREF(EP)=1.E-12*FLOWIN*EPSIN RESREF(V1)=RESREF(W1) GROUP 17. Under-relaxation devices DTF=100.*DZW1*YVLAST/(WIN+UAC) RELAX(V1,LINRLX,0.5);RELAX(W1,LINRLX,0.5) RELAX(KE,LINRLX,0.3);RELAX(EP,LINRLX,0.3) RELAX(P1,LINRLX,0.7);RELAX(RHO1,LINRLX,1.0) RELAX(MACZ,LINRLX,0.8) GROUP 18. Limits on variables or increments to them VARMIN(W1)=1.E-10;VARMIN(P1)=1.E-4*PTOT VARMIN(RHO1)=0.001*RHTOT;VARMIN(H1)=1.0E-10 VARMAX(RHO1)=5.0*RHTOT;VARMAX(H1)=HTOT;VARMAX(P1)=1.0E10*PTOT GROUP 19. Data communicated by satellite to GROUND GROUP 20. Preliminary print-out OUTPUT(MACH,P,P,P,P,Y,P) GROUP 21. Print-out of variables GROUP 22. Spot-value print-out IXMON=1;IYMON=1;IZMON=1 GROUP 23. Field print-out and plot control ITABL=2;NPLT=2;NYPRIN=2;NZPRIN=NZ/5 IF(NZ.GT.1) THEN + IDISPA=2;IDISPB=1;IDISPC=NZ ENDIF LITHYD=20;TSTSWP=-1;IPLTL=LITHYD